帮助 关于我们

返回检索结果

基于图像块分类稀疏表示的超分辨率重构算法
Image Super-Resolution Algorithms Based on Sparse Representation of Classified Image Patches

查看参考文献16篇

文摘 目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别训练各自对应的低分辨率和高分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应的高、低分辨率字典通过正交匹配追踪算法重构.实验结果表明,与单字典稀疏表示算法相比,本文算法对图像边缘部分重构质量明显改善,同时重构速度显著提高.
其他语种文摘 At present,super-resolution algorithms based on sparse representation of image patches exploit single dictionary to represent the image patches,which can not reflect the differences of various image patches types.In this paper,a novel method based on sparse representation of classified image patches is proposed to overcome this disadvantage.In this method,image patches are firstly divided into smooth patches,different directional edge patches and irregular structure patches by local features.Then these classified patches are applied into training the corresponding high and low resolution dictionary pairs.During the reconstruction process,simple bicubic interpolation approach is used for smooth patches while edge and irregular structure patches are reconstructed from their corresponding dictionary pairs using orthogonal matching pursuit algorithm.Experiment results show that the proposed algorithm significantly improves the visual quality of the edges and has faster speed compared with other single dictionary methods.
来源 电子学报 ,2012,40(5):920-925 【核心库】
DOI 10.3969/j.issn.0372-2112.2012.05.010
关键词 超分辨率 ; 稀疏表示 ; 块分类 ; 正交匹配追踪
地址

燕山大学信息科学与工程学院, 河北, 秦皇岛, 066004

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 电子技术、通信技术
基金 国家自然科学基金 ;  河北省自然科学基金
文献收藏号 CSCD:4544692

参考文献 共 16 共1页

1.  Hou H S. Cubic spline for image interpolation and digital filtering. IEEE Transaction on Signal Pressing,1978,26(6):508-517 CSCD被引 7    
2.  Mallet S. Super-Resolution with sparse mixing estimators. IEEE Transactions on Image Processing,2010,19(11):2889-2900 CSCD被引 2    
3.  邵文泽. 基于各向异性MRF建模的多帧图像变分超分辨率重建. 电子学报,2009,36(6):1256-1263 CSCD被引 9    
4.  韩玉斌. 一种视频序列的超分辨率重建算法. 电子学报,2005,33(1):126-130 CSCD被引 2    
5.  Freeman W T. Example-based super-resolution. IEEE Computer Graphics and Applications,2002,22(2):56-65 CSCD被引 215    
6.  Elad M. Example-based regularization deployed to super-resolution reconstruction of a single image. The Computer Journal,2007,50(4):1-16 CSCD被引 8    
7.  Yang Jianchao. Image super-resolution via sparse representation. IEEE Transaction on Image Processing,2010,19(11):2861-2873 CSCD被引 84    
8.  Yang Jianchao. Image super-resolution as sparse representation of raw image patches. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8 CSCD被引 1    
9.  Zeyde R. On single image scale-up using sparse-representations. Proceedings of the 7th International Conference on Curves and Surfaces,2010 CSCD被引 2    
10.  Aharon M. The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transaction on Signal Processing,2006,54(11):4311-4322 CSCD被引 871    
11.  Rubinstein R. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit,2008 CSCD被引 13    
12.  He Xiaofei. Locality preserving projections. Advances in Neural Information Processing Systems,2003:153-160 CSCD被引 34    
13.  Pun T. Entropic thresholding, a new approach. Computer Graphics and Image Processing,1981,16(3):210-239 CSCD被引 54    
14.  Feng Xiaoguang. Multiscale principal components analysis for image local orientation estimation. Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers,2002:478-482 CSCD被引 3    
15.  Glasner D. Super-Resolution from a Single Image. Proceedings of the 12th IEEE International Conference on Computer Vision,2009:349-356 CSCD被引 10    
16.  Irani M. Improving resolution by image registration. Graph Models Image Process,1991,53(3):231-239 CSCD被引 208    
引证文献 29

1 殷俊 核稀疏保持投影及生物特征识别应用 电子学报,2013,41(4):639-645
CSCD被引 11

2 李洪均 字典原子优化的图像稀疏表示及其应用 东南大学学报. 自然科学版,2014,44(1):116-122
CSCD被引 1

显示所有29篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号