相位恢复算法:原理、发展与应用(特邀)
Phase retrieval algorithms: principles, developments and applications (invited)
查看参考文献180篇
文摘
|
研究表明,由于相位比振幅包含更多关于场的信息,因此相位测量在现代科学和工程的诸多分支中始终是研究的热点问题。在可见的电磁波范围内,相位信息很难通过现有的光电探测器直接采集获取。相位恢复技术提供了一种从捕获的强度信息中将相位信息"计算"出来的有效手段,并已成功应用于天文观测、生物医学成像和数字信号复原等多个科学领域。算法是相位恢复技术的核心,也是该技术发展和应用的关键。文中结合物理学原理和信号处理方法对相位恢复算法的基本原理进行阐述,综述了各类相位恢复算法的发展历程及其优缺点,并简单概述了相位恢复算法在光学领域的典型应用,最终指明其面临的挑战和未来的发展趋势:更优异的收敛性能和噪声鲁棒性、恢复更复杂物体相位信息的能力、多目标多任务集成的兼容性。 |
其他语种文摘
|
Because the phase contains more information about the field in contrast to the amplitude, phase measurement has always been a hot topic in many branches of modern science and engineering. Within the visible range of electromagnetic wave, it is quite difficult to directly obtain phase information by the existing photodetectors. Phase retrieval provides an effective method to "figure out " the phase information from the captured intensity information, and has achieved successful applications in several scientific fields including astronomical observation, biomedical imaging and digital signal restoration. Algorithm is not only the core of phase retrieval, but is also the key to its development and applications. This paper demonstrates the basic principles of phase retrieval algorithms in combination with physical principles and signal processing methods, summarizes the development of various kinds of algorithms as well as their advantages and disadvantages, and briefly lists some typical applications in the field of optics. Finally, the challenges are pointed out, and the future development directions are described as: better convergence performance and noise robustness, phase-retrieval ability for more complex objects, compatibility for integration of multiple objectives and tasks. |
来源
|
红外与激光工程
,2022,51(11):20220402 【核心库】
|
DOI
|
10.3788/IRLA20220402
|
关键词
|
相位恢复
;
计算成像
;
信号处理
;
最优化理论
|
地址
|
1.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100094
3.
中国科学院空间精密测量技术重点实验室, 中国科学院空间精密测量技术重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
物理学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7417304
|
参考文献 共
180
共9页
|
1.
Lax M. From Maxwell to paraxial wave optics.
Phys Rev A,1975,11(4):1365-1370
|
CSCD被引
37
次
|
|
|
|
2.
Cowley J M.
Diffraction Physics,1995
|
CSCD被引
6
次
|
|
|
|
3.
Stratton J A.
Electromagnetic Theory,2007
|
CSCD被引
4
次
|
|
|
|
4.
Hecht E.
Optics. 4th ed,2001
|
CSCD被引
4
次
|
|
|
|
5.
Oppenhein A V. The importance of phase in signals.
Proceedings of IEEE,1981,69(5):529-541
|
CSCD被引
1
次
|
|
|
|
6.
Giloh H. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate.
Science,1982,217(4566):1252-1255
|
CSCD被引
9
次
|
|
|
|
7.
Stephens D J. Light microscopy techniques for live cell imaging.
Science,2003,300(5616):82-86
|
CSCD被引
66
次
|
|
|
|
8.
Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II.
Physica,1942,9(10):974-986
|
CSCD被引
16
次
|
|
|
|
9.
Nomarski G. Differential microinterferometer with polarized waves.
J Phys Radium,1955,16:9-13
|
CSCD被引
1
次
|
|
|
|
10.
Park Y. Quantitative phase imaging in biomedicine.
Nat Photonics,2018,12(10):578-589
|
CSCD被引
77
次
|
|
|
|
11.
Jo Y. Quantitative phase imaging and artificial intelligence: A review.
IEEE J Sel Top Quantum Electron,2018,25(1):1-14
|
CSCD被引
14
次
|
|
|
|
12.
Cuche E. Digital holography for quantitative phase-contrast imaging.
Opt Lett,1999,24(5):291-293
|
CSCD被引
87
次
|
|
|
|
13.
Schnars U. Digital recording and numerical reconstruction of holograms.
Meas Sci Technol,2002,13(9):R85
|
CSCD被引
88
次
|
|
|
|
14.
Tahara T. Digital holography and its multidimensional imaging applications: A review.
Microscopy,2018,67(2):55-67
|
CSCD被引
4
次
|
|
|
|
15.
Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen.
Zt Instrumentenkd,1990,20(47):17-27
|
CSCD被引
2
次
|
|
|
|
16.
Shack R V. Production and use of a lecticular hartmann screen.
J Opt Soc Am,1971,61:656-661
|
CSCD被引
4
次
|
|
|
|
17.
Platt B C. History and principles of shack-hartmann wavefront sensing.
J Cataract Refr Surg,2001,17(5):S573-S577
|
CSCD被引
1
次
|
|
|
|
18.
Esposito S. Pyramid wavefront sensor behavior in partial correction adaptive optic systems.
Astron Astrophys,2001,369(2):L9-L12
|
CSCD被引
12
次
|
|
|
|
19.
Ragazzoni R. A pyramid wavefront sensor with no dynamic modulation.
Opt Commun,2002,208(1/3):51-60
|
CSCD被引
14
次
|
|
|
|
20.
Neil M A A. New modal wave-front sensor: A theoretical analysis.
J Opt Soc Am A,2000,17(6):1098-1107
|
CSCD被引
15
次
|
|
|
|
|