帮助 关于我们

返回检索结果

黄河源区多年冻土空间分布变化特征数值模拟
Numerical simulation of spatial distribution and change of permafrost in the source area of the Yellow River

查看参考文献29篇

文摘 基于IPCC第五次评估报告预估的气温变化情景,采用数值模拟的方法对黄河源区典型冻土类型开展模拟,推算过去及预测未来黄河源区冻土分布空间变化过程和发展趋势。结果表明:1972-2012年源区多年冻土只有少部分发生退化,退化的冻土面积为279 km~2 ,季节冻土主要集中在源区东南部的热曲谷地、小野马岭以及两湖流域南部的汤岔玛地带;RCP 2.6、RCP 6.0、 RCP 8.5情景下,2050年多年冻土退化为季节冻土的面积差别不大,分别为2224 km~2、2347 km~2、 2559 km~2,占源区面积的7.5%、7.9%、8.6%;勒那曲、多曲、白马曲零星出现季节冻土,野牛沟、野马滩以及鄂陵湖东部的玛多四湖所在黄河低谷大片为季节冻土;2100年多年冻土退化为季节冻土的面积分别为5636 km~2、9769 km~2、15548 km~2,占源区面积的19%、32.9%、52.3%;星宿海、尕玛勒滩、多格茸的多年冻土发生退化,低温冻土变为高温冻土,各类年平均地温出现了不同程度的升高。到2100年,RCP2.6情景下源区多年冻土全部退化为季节冻土主要发生在目前年平均地温高于-0.15 ℃的区域,而-0.15~-0.44℃的区域部分发生退化;RCP 6.0、RCP8.5情景下目前年平均地温分别为高于-0.21 ℃以及-0.38℃的区域多年冻土全部发生退化,而-0.21~-0.69 ℃以及-0.38~-0.88 ℃的区域部分发生退化。
其他语种文摘 The numerical simulation method was used to predict the future possible changes that happened on permafrost by setting up the prediction results of the climate model from the IPCC Fifth Assessment Report as a possible climatic condition. The source area of the Yellow River with complicated permafrost conditions was chosen as the study area. The past and future permafrost distribution were predicted, and the future possible changing trends in permafrost in this area were calculated. The obtained results were, (1) during the past 30 years of 1972-2012, a small part of permafrost was degraded, which covered an area of about 279 km~2. In this period, the seasonal frozen soil type was mainly distributed in the of Requ river valley, Xiaoyemaling, and Tangchama, as well as the southern part of the two lake basins. (2) Under different climatic scenarios of RCP 2.6, RCP 6.0 and RCP 8.5, little difference would happen on permafrost degradation until 2050. In details, the possible degradation area of permafrost would be 2224 km~2, 2347 km~2, and 2559 km~2 under the scenarios of RCP 2.6, RCP 6.0, and RCP 8.5, respectively, accounting for 7.5%, 7.9%, 8.6% of the total study area. The seasonal frozen soil type would be sporadically distributed in the river valleys of Lena Qu, Duo Qu, Baima Qu, but widely distributed around Yeniugou, Yeniutan and four Madio lakes located in the Yellow River valley in the eastern part of Ngoring Lake. (3) In 2100, the predicted permafrost degradation area would be 5636 km~2, 9769 km~2 and 15548 km~2, respectively, and they would account for 19%, 32.9% and 52.3% of the source area. The permafrost degradation mainly occurred in the areas of Xingsuhai, Gamaletan, Duogerong, of which low-temperature permafrost would be degraded into a high- temperature permafrost type. And the mean annual ground temperature of permafrost would rise differentially. (4) Under the scenario of RCP 2.6, all permafrost with current mean annual ground temperature higher than -0.15℃ would be degraded into seasonal frozen soil type, and the permafrost with the mean annual ground temperature ranging from -0.15 ℃ to -0.44℃ would be partly degraded into seasonal frozen soil type. Under the scenarios of RCP 6.0 and RCP 8.5, permafrost with the current mean annual ground temperature higher than -0.21 ℃ and -0.38℃ would be totally degraded, the permafrost with the mean annual ground temperature ranging from - 0.21 to-0.69 ℃ and from -0.38 ℃ to -0.88 ℃ would be partly degraded.
来源 地理学报 ,2017,72(9):1621-1633 【核心库】
DOI 10.11821/dlxb201709007
关键词 黄河源区 ; 多年冻土 ; 空间分布 ; 变化特征 ; 数值模拟
地址

中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 730000

语种 中文
文献类型 研究性论文
ISSN 0375-5444
学科 地质学
基金 冻土工程国家重点实验室自主研究课题 ;  国家自然科学基金项目 ;  中国科学院重点部署项目
文献收藏号 CSCD:6068307

参考文献 共 29 共2页

1.  程国栋. 青藏高原开发中的冻土问题. 第四纪研究,2000,20(6):521-531 CSCD被引 62    
2.  秦大河. 冰冻圈变化及其影响研究——现状、趋势及关键问题. 气候变化研究进展,2009,5(4):187-195 CSCD被引 63    
3.  Yang M. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews,2010,103(1/2):31-44 CSCD被引 29    
4.  罗栋梁. 青海高原中、东部多年冻土及寒区环境退化. 冰川冻土,2012,34(3):538-546 CSCD被引 55    
5.  牛丽. 中国西北地区典型流域冻土退化对水文过程的影响. 中国科学:地球科学,2011,41(1):85-92 CSCD被引 22    
6.  尹国安. 青藏铁路沿线多年冻土分布特征及其对环境变化的响应. 冰川冻土,2014,36(4):772-781 CSCD被引 28    
7.  李新. 高海拔多年冻土对全球变化的响应模型. 中国科学. D辑, 地球科学,1999,29(2):185-192 CSCD被引 44    
8.  王澄海. 未来50 a中国地区冻土面积分布变化. 冰川冻土,2014,36(1):1-8 CSCD被引 43    
9.  南卓铜. 未来50与100a青藏高原多年冻土变化情景预测. 中国科学. D辑, 地球科学,2004,34(6):528-534 CSCD被引 55    
10.  Guo D. A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research Atmospheres,2012,117(D5):214-221 CSCD被引 1    
11.  Lawrence D M. A projection of severe near- surface permafrost degradation during the 21st century. Geophysical Research Letters,2005,32(24):230-250 CSCD被引 19    
12.  Wang W. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere Discussions,2015,9(2):1769-1810 CSCD被引 1    
13.  金会军. 黄河源区冻土特征及退化趋势. 冰川冻土,2010,32(1):10-17 CSCD被引 51    
14.  张森琦. 黄河源区多年冻土退化及其环境反映. 冰川冻土,2004,26(1):1-6 CSCD被引 79    
15.  王根绪. 黄河源区生态环境变化与成因分析. 冰川冻土,2000,22(3):200-205 CSCD被引 92    
16.  Jin H J. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters,2009,4(4):045206 CSCD被引 34    
17.  钱程. 基于ASTER-GDEM数据的黄河源地区构造地貌分析. 中国地质,2012,39(5):1247-1260 CSCD被引 18    
18.  罗栋梁. 黄河源区多年冻土温度及厚度研究新进展. 地理科学,2012,32(7):898-904 CSCD被引 17    
19.  李静. 黄河源区冻土分布制图及其热稳定性特征模拟. 地理科学,2016,36(4):588-596 CSCD被引 12    
20.  周幼吾. 中国冻土,2000:1-42,108-114 CSCD被引 73    
引证文献 9

1 孙哲 下边界条件对多年冻土温度场变化数值模拟的影响 冰川冻土,2021,43(2):357-369
CSCD被引 4

2 郑子彦 黄河源区气候水文和植被覆盖变化及面临问题的对策建议 中国科学院院刊,2020,35(1):61-72
CSCD被引 29

显示所有9篇文献

论文科学数据集

1. 青藏高原多年冻土活动层厚度和地温模拟数据(2000-2015、2061-2080)

2. 雅鲁藏布江流域土壤冻结深度数据集(1901-2016)

3. 青藏高原多年冻土综合监测数据集(2002-2018)

数据来源:
国家青藏高原科学数据中心

1. 乌江上游地区森林生态系统水源涵养及其空间分布数据集

2. 中国5年间隔陆地生态系统空间分布数据集(1990-2010)

3. 模拟增温对吕梁山森林群落草本层植物物种多样性空间分布影响数据集

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号