黄河源区多年冻土空间分布变化特征数值模拟
Numerical simulation of spatial distribution and change of permafrost in the source area of the Yellow River
查看参考文献29篇
文摘
|
基于IPCC第五次评估报告预估的气温变化情景,采用数值模拟的方法对黄河源区典型冻土类型开展模拟,推算过去及预测未来黄河源区冻土分布空间变化过程和发展趋势。结果表明:1972-2012年源区多年冻土只有少部分发生退化,退化的冻土面积为279 km~2 ,季节冻土主要集中在源区东南部的热曲谷地、小野马岭以及两湖流域南部的汤岔玛地带;RCP 2.6、RCP 6.0、 RCP 8.5情景下,2050年多年冻土退化为季节冻土的面积差别不大,分别为2224 km~2、2347 km~2、 2559 km~2,占源区面积的7.5%、7.9%、8.6%;勒那曲、多曲、白马曲零星出现季节冻土,野牛沟、野马滩以及鄂陵湖东部的玛多四湖所在黄河低谷大片为季节冻土;2100年多年冻土退化为季节冻土的面积分别为5636 km~2、9769 km~2、15548 km~2,占源区面积的19%、32.9%、52.3%;星宿海、尕玛勒滩、多格茸的多年冻土发生退化,低温冻土变为高温冻土,各类年平均地温出现了不同程度的升高。到2100年,RCP2.6情景下源区多年冻土全部退化为季节冻土主要发生在目前年平均地温高于-0.15 ℃的区域,而-0.15~-0.44℃的区域部分发生退化;RCP 6.0、RCP8.5情景下目前年平均地温分别为高于-0.21 ℃以及-0.38℃的区域多年冻土全部发生退化,而-0.21~-0.69 ℃以及-0.38~-0.88 ℃的区域部分发生退化。 |
其他语种文摘
|
The numerical simulation method was used to predict the future possible changes that happened on permafrost by setting up the prediction results of the climate model from the IPCC Fifth Assessment Report as a possible climatic condition. The source area of the Yellow River with complicated permafrost conditions was chosen as the study area. The past and future permafrost distribution were predicted, and the future possible changing trends in permafrost in this area were calculated. The obtained results were, (1) during the past 30 years of 1972-2012, a small part of permafrost was degraded, which covered an area of about 279 km~2. In this period, the seasonal frozen soil type was mainly distributed in the of Requ river valley, Xiaoyemaling, and Tangchama, as well as the southern part of the two lake basins. (2) Under different climatic scenarios of RCP 2.6, RCP 6.0 and RCP 8.5, little difference would happen on permafrost degradation until 2050. In details, the possible degradation area of permafrost would be 2224 km~2, 2347 km~2, and 2559 km~2 under the scenarios of RCP 2.6, RCP 6.0, and RCP 8.5, respectively, accounting for 7.5%, 7.9%, 8.6% of the total study area. The seasonal frozen soil type would be sporadically distributed in the river valleys of Lena Qu, Duo Qu, Baima Qu, but widely distributed around Yeniugou, Yeniutan and four Madio lakes located in the Yellow River valley in the eastern part of Ngoring Lake. (3) In 2100, the predicted permafrost degradation area would be 5636 km~2, 9769 km~2 and 15548 km~2, respectively, and they would account for 19%, 32.9% and 52.3% of the source area. The permafrost degradation mainly occurred in the areas of Xingsuhai, Gamaletan, Duogerong, of which low-temperature permafrost would be degraded into a high- temperature permafrost type. And the mean annual ground temperature of permafrost would rise differentially. (4) Under the scenario of RCP 2.6, all permafrost with current mean annual ground temperature higher than -0.15℃ would be degraded into seasonal frozen soil type, and the permafrost with the mean annual ground temperature ranging from -0.15 ℃ to -0.44℃ would be partly degraded into seasonal frozen soil type. Under the scenarios of RCP 6.0 and RCP 8.5, permafrost with the current mean annual ground temperature higher than -0.21 ℃ and -0.38℃ would be totally degraded, the permafrost with the mean annual ground temperature ranging from - 0.21 to-0.69 ℃ and from -0.38 ℃ to -0.88 ℃ would be partly degraded. |
来源
|
地理学报
,2017,72(9):1621-1633 【核心库】
|
DOI
|
10.11821/dlxb201709007
|
关键词
|
黄河源区
;
多年冻土
;
空间分布
;
变化特征
;
数值模拟
|
地址
|
中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 730000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地质学 |
基金
|
冻土工程国家重点实验室自主研究课题
;
国家自然科学基金项目
;
中国科学院重点部署项目
|
文献收藏号
|
CSCD:6068307
|
参考文献 共
29
共2页
|
1.
程国栋. 青藏高原开发中的冻土问题.
第四纪研究,2000,20(6):521-531
|
CSCD被引
62
次
|
|
|
|
2.
秦大河. 冰冻圈变化及其影响研究——现状、趋势及关键问题.
气候变化研究进展,2009,5(4):187-195
|
CSCD被引
63
次
|
|
|
|
3.
Yang M. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research.
Earth-Science Reviews,2010,103(1/2):31-44
|
CSCD被引
29
次
|
|
|
|
4.
罗栋梁. 青海高原中、东部多年冻土及寒区环境退化.
冰川冻土,2012,34(3):538-546
|
CSCD被引
55
次
|
|
|
|
5.
牛丽. 中国西北地区典型流域冻土退化对水文过程的影响.
中国科学:地球科学,2011,41(1):85-92
|
CSCD被引
22
次
|
|
|
|
6.
尹国安. 青藏铁路沿线多年冻土分布特征及其对环境变化的响应.
冰川冻土,2014,36(4):772-781
|
CSCD被引
28
次
|
|
|
|
7.
李新. 高海拔多年冻土对全球变化的响应模型.
中国科学. D辑, 地球科学,1999,29(2):185-192
|
CSCD被引
44
次
|
|
|
|
8.
王澄海. 未来50 a中国地区冻土面积分布变化.
冰川冻土,2014,36(1):1-8
|
CSCD被引
43
次
|
|
|
|
9.
南卓铜. 未来50与100a青藏高原多年冻土变化情景预测.
中国科学. D辑, 地球科学,2004,34(6):528-534
|
CSCD被引
55
次
|
|
|
|
10.
Guo D. A projection of permafrost degradation on the Tibetan Plateau during the 21st century.
Journal of Geophysical Research Atmospheres,2012,117(D5):214-221
|
CSCD被引
1
次
|
|
|
|
11.
Lawrence D M. A projection of severe near- surface permafrost degradation during the 21st century.
Geophysical Research Letters,2005,32(24):230-250
|
CSCD被引
19
次
|
|
|
|
12.
Wang W. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area.
Cryosphere Discussions,2015,9(2):1769-1810
|
CSCD被引
1
次
|
|
|
|
13.
金会军. 黄河源区冻土特征及退化趋势.
冰川冻土,2010,32(1):10-17
|
CSCD被引
51
次
|
|
|
|
14.
张森琦. 黄河源区多年冻土退化及其环境反映.
冰川冻土,2004,26(1):1-6
|
CSCD被引
79
次
|
|
|
|
15.
王根绪. 黄河源区生态环境变化与成因分析.
冰川冻土,2000,22(3):200-205
|
CSCD被引
92
次
|
|
|
|
16.
Jin H J. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts.
Environmental Research Letters,2009,4(4):045206
|
CSCD被引
34
次
|
|
|
|
17.
钱程. 基于ASTER-GDEM数据的黄河源地区构造地貌分析.
中国地质,2012,39(5):1247-1260
|
CSCD被引
18
次
|
|
|
|
18.
罗栋梁. 黄河源区多年冻土温度及厚度研究新进展.
地理科学,2012,32(7):898-904
|
CSCD被引
17
次
|
|
|
|
19.
李静. 黄河源区冻土分布制图及其热稳定性特征模拟.
地理科学,2016,36(4):588-596
|
CSCD被引
12
次
|
|
|
|
20.
周幼吾.
中国冻土,2000:1-42,108-114
|
CSCD被引
73
次
|
|
|
|
|