石墨烯增强铝基纳米复合材料研究进展
Graphene Reinforced Aluminum Matrix Nanocomposites
查看参考文献56篇
文摘
|
石墨烯以其优异力学、物理性能以及独特二维结构成为铝基复合材料的理想纳米增强相。金属基纳米复合材料制备技术快速发展,促进了石墨烯增强铝基纳米复合材料在结构和功能材料领域中的广泛研究。石墨烯在铝基体中的分散以及石墨烯/铝的界面控制问题具有重要科学研究和工程应用价值。重点介绍石墨烯增强铝基纳米复合材料最新研究进展,主要包括石墨烯增强铝基纳米复合材料的分散和冶金成型技术及其结构表征和力学性能研究。实验表明石墨烯能够显著提高铝基体力学性能,但作者认为通过优化工艺参数、改善微观结构和控制结合界面能够进一步优化材料性能。此外,为实现工程应用,还需加强石墨烯增强铝基复合材料的腐蚀性能和热、电性等物理性能研究,并突破材料的低成本、大规模制备技术。本文还基于石墨烯独特二维结构和表面状态,对石墨烯的增强增韧机制进行了深入讨论。 |
其他语种文摘
|
Graphene materials with excellent mechanical and physical properties as well as two-dimensional flexible morphology are ideal reinforcement nanofillers for aluminum matrix nanocomposites. Rapid progress in graphene materials and nanocomposites fabricating technology promotes the development of advanced graphene reinforced aluminum matrix nanocomposites for structural and functional applications. Nevertheless, the dispersion of graphene nanofillers within aluminum matrix and the interfacial controlling between them remain longstanding challenges in the fabrication of graphene reinforced aluminum matrix nanocomposites. This paper focused on the recent development of the fabrication and characterization of graphene reinforced aluminum matrix nanocomposites,including the dispersion and consolidation technology of graphene reinforced aluminum matrix nanocomposites as well as their structural characters and mechanical behaviors. The mechanical performances of aluminum matrix were remarkably enhanced by the introduction of graphene, which can increase further by optimizing process parameters,improving microstructure and controlling interface between aluminum and graphene. Furthermore, in order to realize the engineering application, more investigation should be given on the corrosion, thermal and electrical properties. It is also very important to develop a new method with low cost and large-scale production. As a novel 2-dimension structure and unique surface state of graphene, the reinforcing and toughening mechanism was discussed. |
来源
|
航空材料学报
,2016,36(3):57-70 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2016.3.007
|
关键词
|
石墨烯
;
铝基纳米复合材料
;
制备工艺
;
力学性能
;
分散工艺
;
界面结合
;
增强机制
|
地址
|
北京航空材料研究院石墨烯及应用研究中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
中国航空工业集团公司重大基础创新研究基金
;
中国航空工业第一集团公司北京航空材料研究院项目
|
文献收藏号
|
CSCD:5718081
|
参考文献 共
56
共3页
|
1.
Geim A K. The rise of grapheme.
Nature Materials,2007,6:183-191
|
CSCD被引
2266
次
|
|
|
|
2.
Novoselov K S. Electric field effect in atomically thin carbon films.
Science,2004,306(5696):666-669
|
CSCD被引
4039
次
|
|
|
|
3.
Morozov S V. Giant intrinsic carrier mobilities in graphene and its bilayer.
Physical Review Letters,2008,100(1):145-150
|
CSCD被引
152
次
|
|
|
|
4.
Macdonald A H. Graphene: exploring carbon flatland.
Physics Today,2007,60(8):35
|
CSCD被引
24
次
|
|
|
|
5.
Jayasena B. A novel mechanical cleavage method for synthesizing few-layer graphenes.
Nanoscale Research Letters,2011,6(12):5187-5187
|
CSCD被引
8
次
|
|
|
|
6.
Jayasena B. Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation.
Nanotechnology,2013,24(20):1853-1865
|
CSCD被引
1
次
|
|
|
|
7.
Paton K R. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids.
Nature Materials,2014,13(6):624-630
|
CSCD被引
81
次
|
|
|
|
8.
Shin S E. Strengthening behavior of few-layered graphene/aluminum composites.
Carbon,2015,82:143-151
|
CSCD被引
44
次
|
|
|
|
9.
Chen I W P. Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor.
Carbon,2015,90:16-24
|
CSCD被引
3
次
|
|
|
|
10.
Hernandez Y. High-yield production of graphene by liquid-phase exfoliation of graphite.
Nature Nanotechnology,2008,3(9):563-568
|
CSCD被引
295
次
|
|
|
|
11.
Dong S L. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to Si02.
Nano Letters,2008,8(12):4320-4325
|
CSCD被引
2
次
|
|
|
|
12.
Bae S K. Roll-to-roll production of 30-inch graphene films for transparent electrodes.
Nature Nanotechnology,2012,5(8):574-578
|
CSCD被引
357
次
|
|
|
|
13.
Rafiee J. Wetting transparency of graphene.
Nature Materials,2012,11(3):217-222
|
CSCD被引
29
次
|
|
|
|
14.
Weatherup R S. In situ characterization of alloy catalysts for low-temperature graphene growth.
Nano Letters,2011,11(10):4154-4160
|
CSCD被引
11
次
|
|
|
|
15.
Chae S J. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation.
Advanced Materials,2009,21(22):2328-2333
|
CSCD被引
33
次
|
|
|
|
16.
Kovtyukhova N I. Non-oxidative intercalation and exfoliation of graphite by Bronsted acids.
Nature Chemistry,2014,6(11):957-963
|
CSCD被引
6
次
|
|
|
|
17.
Eigler S. Wet chemical synthesis of graphene.
Advanced Materials,2013,25(26):3583-3587
|
CSCD被引
22
次
|
|
|
|
18.
Kosynkin D V. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
Nature,2009,458(7240):872-876
|
CSCD被引
144
次
|
|
|
|
19.
Jiao L Y. Narrow graphene nanoribbons from carbon nanotubes.
Nature,2009,458(7240):877-880
|
CSCD被引
65
次
|
|
|
|
20.
Tang L B. Bottom-up synthesis of large-scale graphene oxide nanosheets.
Journal of Materials Chemistry,2012,22(12):5676-5683
|
CSCD被引
4
次
|
|
|
|
|