通信基站对射电望远镜电磁干扰的预测方法
Prediction method for electromagnetic interference of communication base station to radio telescope
查看参考文献14篇
文摘
|
射电望远镜具有极高的灵敏度和很宽的工作频率范围,在执行观测任务时,不仅会接收到观测目标产生的信号,还会接收到台址内外各类电磁干扰信号,从而影响观测的准确性,其中以通信基站的干扰最为突出.为了预测通信基站对射电望远镜的电磁干扰,本文提出了一种基于相对地形的电磁干扰预测方法.该方法将地形高程数据转换成相对地形数据,以相对地形的波动高度作为判据,采用Deygout模型计算了通信基站到射电望远镜的路径损耗.再结合通信基站的天线参数,最终得到了通信基站对射电望远镜的干扰功率.文中着重分析了该方法的实现过程,为下一步自主研发射电望远镜电磁干扰预测软件提供了基础. |
其他语种文摘
|
Radio telescopes have extremely high sensitivity and wide operating frequency range. When performing observation tasks, they will not only receive the signals generated by the observed targets, but also receive electromagnetic interference signals inside and outside the radio telescope site. These interference signals, especially the interference from communication base stations, will affect the accuracy of the observation. In order to predict the electromagnetic interference of the communication base station to the radio telescope, an electromagnetic interference prediction method based on relative terrain is proposed. This method converts the terrain elevation data into relative terrain data, taking the relative height of terrain as the criterion, and calculates the path loss of the communication base station to the radio telescope by using Deygout model. Then, combined with the parameters of the base station antenna, the interference power of the communication base station to the radio telescope is obtained. This paper focuses on the analytical process of the proposed method, which provides a good foundation for developing the electromagnetic interference prediction software of radio telescope. |
来源
|
中国科学. 物理学
, 力学, 天文学,2019,49(9):099513 【核心库】
|
DOI
|
10.1360/SSPMA-2019-0023
|
关键词
|
射电望远镜
;
通信基站
;
相对地形
;
电磁干扰预测
|
地址
|
1.
西安电子科技大学机电工程学院, 西安, 710071
2.
中国科学院新疆天文台, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
天文学;电子技术、通信技术 |
基金
|
国家973计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:6579482
|
参考文献 共
14
共1页
|
1.
Waterman P J. Conducting radio astronomy in the EMC environment.
IEEE Trans Electromagn Compat,1984,26:29-33
|
CSCD被引
4
次
|
|
|
|
2.
Wilson C. Measures for control of EMI and RFI at the Murchison radioastronomy observatory, Australia.
Proceedings of 2013 Asia-Pacific Symposium on Electromagnetic Compatibility,2013:1-4
|
CSCD被引
1
次
|
|
|
|
3.
刘斌. 射电天文业务的无线电管理浅析.
中国无线电,2009,3:51-56
|
CSCD被引
3
次
|
|
|
|
4.
Ambrosini R. Radio frequency self-interference from a data processing centre at a radio telescope site.
Exp Astron,2010,27:121-130
|
CSCD被引
5
次
|
|
|
|
5.
Bolli P. The mobile laboratory for radio-frequency interference monitoring at the Sardinia radio telescope.
IEEE Antennas Propag Mag,2013,55:19-24
|
CSCD被引
4
次
|
|
|
|
6.
李建斌. 大型射电望远镜电磁环境频谱监测.
电波科学学报,2015,30:378-382
|
CSCD被引
13
次
|
|
|
|
7.
Xu Q L. Interference coupling analysis based on a hybrid method:application to a radio telescope system.
Res Astron Astrophys,2018,18:14
|
CSCD被引
2
次
|
|
|
|
8.
邱扬. 全可动射电天文望远镜的电磁干扰特征研究.
中国科学:物理学力学天文学,2017,47:059511
|
CSCD被引
7
次
|
|
|
|
9.
温锐彪. GSM移动通信基站对周围环境电磁辐射影响.
生态环境学报,2011,20:1158-1160
|
CSCD被引
3
次
|
|
|
|
10.
Liu J. Base-station antenna modeling for full-wave electromagnetic simulation.
Proceedings of 2014 IEEE Antennas and Propagation Society International Symposium,2014:2106-2107
|
CSCD被引
1
次
|
|
|
|
11.
刘奇. 射电天文台址电子设备电磁辐射评估.
天文研究与技术,2015,12:292-298
|
CSCD被引
14
次
|
|
|
|
12.
Chio C K. Prediction model for radiation from base-station antennas using electromagnetic simulation.
Proceedings of 2012 Asia-Pacific Microwave Conference,2012:4-7
|
CSCD被引
1
次
|
|
|
|
13.
Ming W. Base station electromagnetic simulation using ray-tracing method.
Proceedings of 6th Asia-Pacific Conference on Environmental Electromagnetics,2012:360-362
|
CSCD被引
1
次
|
|
|
|
14.
刘奇. 射电天文台站准实时电波环境测量方法.
电波科学学报,2017,32:718-724
|
CSCD被引
16
次
|
|
|
|
|