帮助 关于我们

返回检索结果

镁基多孔材料准静态压缩行为与吸能特性研究
The Quasi-static Compressive Behavior and Energy Absorption Properties of Mg-based Porous Materials

查看参考文献12篇

郝刚领 1   韩福生 2   王伟国 3  
文摘 基于可去除填充颗粒的粉末冶金技术制备了孔隙率在40%~80%,孔径在1~2mm内变化的多孔镁和多孔AZ91D镁合金,并系统考察了材料的准静压压缩行为和吸能特性。结果发现,镁基多孔材料的压缩应力-应变曲线由线性弹性区、平台和致密化区域组成,但曲线锯齿状波动较大,表明材料的脆性断裂机制。压缩屈服强度与相对密度的关系可通过Gibson-Ashby模型来理解,但屈服强度对孔径的依赖性较低。吸能本领随相对密度的增加而增加,相同条件下,多孔AZ91D镁合金的吸能本领高于多孔镁,多孔镁的吸能效率则高于多孔AZ91D镁合金。
其他语种文摘 Porous Mg and porous AZ91D alloy were prepared using powder metallurgy method basing on space holding fillers. The porosity and pore size can be controlled in the range of 40%-80% and 0.5-2.0mm respectively. The investigation was carried out on the quasi-static compressive behavior and energy absorption properties of the Mg-based porous materials. The result shows that the compressive stress-strain curves were consisted of linear elastic region, plateau and densification region. The plateau region is serrated which indicates a brittle deformation mechanism. The dependence of yield strength on relative density can be understood in terms of Gibson-Ashby model, but the effect of pore size is small that can be neglectable. The energy absorption capacity of the Mg-based porous materials increases with the relative density increasing. Porous AZ91D alloy at the same conditions exhibits a higher energy absorption capacity than the porous Mg, that however represents a higher energy absorption efficiency than the porous AZ91D alloy.
来源 材料工程 ,2013(2):29-34 【核心库】
DOI 10.3969/j.issn.1001-4381.2013.02.006
关键词 镁基多孔材料 ; 压缩行为 ; 吸能特性
地址

1. 延安大学物理与电子信息学院材料物理研究所, 中国科学院材料物理重点实验室, 陕西, 延安, 716000  

2. 中国科学院固体物理研究所, 中国科学院材料物理重点实验室, 合肥, 230031  

3. 延安大学物理与电子信息学院材料物理研究所, 陕西, 延安, 716000

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 一般工业技术;金属学与金属工艺
基金 陕西省自然科学基金 ;  陕西省教育厅自然科学基金 ;  延安市工业攻关专项 ;  陕西省高水平大学建设专项 ;  延安大学项目
文献收藏号 CSCD:4759257

参考文献 共 12 共1页

1.  Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci,2001,46(6):559-632 CSCD被引 345    
2.  Nakajima H. Porous metals and metal foaming technology. Proceedings of 4~(th) international conference on porous metals and metal foaming technology,2006:1-10 CSCD被引 1    
3.  何德平. 超轻多孔金属,2006:1-7 CSCD被引 1    
4.  Yamada Y. Compressive properties of open-cellular SG91A Al and AZ91 Mg. Materials Science and Engineering A,1999,272(2):455-458 CSCD被引 9    
5.  Mukai T. Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scr Mater,1999,41(4):365-371 CSCD被引 13    
6.  Wen C E. Processing of biocompatible porous Ti and Mg. Scr Mater,2001,45(10/19):1147-1153 CSCD被引 69    
7.  Wen C E. Compressibility of porous magnesium foam: dependency on porosity and pore size. Materials Letters,2004,58(3/4):357-360 CSCD被引 36    
8.  Hao Gangling. Processing and mechanical properties of magnesium foam. Journal of Porous Materials,2009,16(2):251-256 CSCD被引 18    
9.  Gent A N. Permeability of open-cell foamed materials. J Cell Plast,1966,2(1):46-51 CSCD被引 2    
10.  Thornton P H. The deformation of aluminium foams. Metall Trans A,1975,6(6):1253-1263 CSCD被引 7    
11.  Miltz J. Evaluation of cushioning properties of plastic foams from compressive measurements. Polymer Eng Sci,1981,21(15):1010-1014 CSCD被引 76    
12.  Gibson L J. Cellular Solids: Structure and Properties, 2nd ed,1997:175-235 CSCD被引 2    
引证文献 2

1 张赞 多孔镁合金的研究现状 特种铸造及有色合金,2015,35(6):580-585
CSCD被引 1

2 徐吉林 Mg/NiTi复合材料的制备及阻尼性能 复合材料学报,2019,36(3):654-660
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号