太湖水体多环芳烃生态风险的空间分布
Spatial distribution of ecological risk of polycyclic aromatic hydrocarbons in the surface waters of Lake Taihu
查看参考文献24篇
文摘
|
以太湖梅梁湾、贡湖湾和胥口湾水体多环芳烃(PAHs)含量水平为基础,通过物种敏感度分布曲线计算三湖湾水体PAHs对水生生物的潜在危害比例,以此表征PAHs对太湖三湖湾水体的生态风险,并对其空间分布特征进行讨论.结果表明:PAHs对太湖三湖湾水体的生态风险大小依次是:Flua(1.1641%),Phe(0.2206%),Pyr(0.1633%),BaP(0.0175%),Ant(0.0021%),Flu(0.0005%),Ace(0.0000%),∑7PAH的联合生态风险(3.0954%)大于单体PAHs的生态风险.Ant,BaP和∑7PAH对梅梁湾(0.0209%,0.1237%和4.1018%)的生态风险显著高于贡湖湾(0.0023%,0.0085%,3.0414%)和胥口湾(0.0002%,0.0015%,2.3899%)(P<0.05),贡湖湾和胥口湾的生态风险无显著性差异(P>0.05);Flu和Phe对胥口湾(0.0004%,0.1553%)的生态风险显著低于梅梁湾(0.0011%,0.2999%)和贡湖湾(0.0009%,0.2681%)(P<0.05),梅梁湾和贡湖湾的生态风险无显著性差异(P>0.05);Pyr和Flua对梅梁湾(0.3268%,1.7156%),贡湖湾(0.1697%,1.2386%)和胥口湾(0.1044%,0.8339%)水生生物的生态风险具有显著性差异(P<0.05).空间分布表明:梅梁湾西北部PAHs的生态风险最大,贡湖湾北部次之,胥口湾最小. |
其他语种文摘
|
On the basis of PAHs concentrations in Meiliang Bay,Gonghu Bay and Xukou Bay of Taihu Lake,potentially affected fractions of PAHs to aquatic organisms in Lake Taihu were calculated using species sensitivity distribution.Spatial distribution of ecological risk were mapped using geographical information system.The ecological risk of PAHs to aquatic organisms was in the order of Flua(1.1641%),Phe(0.2206%),Pyr(0.1633%),BaP(0.0175%),Ant(0.0021%),Flu(0.0005%),Ace(0.0000%).The combined ecological risk caused by ∑7PAH was higher than that from individual PAHs.Ecological risks of Ant,BaP and ∑7PAH to aquatic organisms in Meiliang Bay(0.0209%,0.1237%,and 4.1018%) were significantly higher than those in Gonghu and Xukou Bay,while there was no significant difference between ecological risks in Gonghu Bay(0.0023%,0.0085%,and 3.0414%)and Xukou Bay(0.0002%,0.0015%,and 2.3899%).Ecological risks of Flu and Phe in Xukou Bay(0.0004%,0.1553%)were significantly lower than those in Meiliang Bay(0.0011%,0.2999%) and Gonghu Bay(0.0009%,0.2681%),whereas there was no significant difference in ecological risks from Flu and Phe in Meiliang Bay and Gonghu Bay.Ecological risks of Pyr and Flua in Meiliang Bay(0.3268%和 1.7156%),Gonghu Bay(0.1697%,1.2386%) and Xukou Bay(0.1044%,0.8339%) were significantly different from each other.The maps of spatial distribution of ecological risk produced by the distance inverse weight method demonstrated that the distribution characteristics of ecological risks from several individual PAHs and ∑7PAH in three bays of Lake Taihu were similar,and the ecological risk of PAHs to all the aquatic organisms in descending order of Northwestern Meiliang Bay,Northern Gonghu Bay and Xukou Bay. |
来源
|
中国环境科学
,2012,32(6):1032-1039 【核心库】
|
关键词
|
太湖
;
多环芳烃
;
生态风险评价
;
空间分布
|
地址
|
1.
中国科学院广州地球化学研究所, 环境基准与风险评估国家重点实验室, 广东, 广州, 510640
2.
中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京, 100012
3.
中国科学院广州地球化学研究所, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6923 |
学科
|
环境科学基础理论 |
基金
|
国家973计划
;
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:4556068
|
参考文献 共
24
共2页
|
1.
Reynaud S. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review.
Aquatic Toxicology,2006,77(2):229-238
|
CSCD被引
11
次
|
|
|
|
2.
Neff J M.
Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fate and biological effects,1979:156-158
|
CSCD被引
1
次
|
|
|
|
3.
Neff J M. Polycyclic aromatic hydrocarbons in the aquatic environment and cancer risk to aquatic organisms and man.
Carcinogenic polynuclear Aromatic Hydrocarbons in the Marine Environment,1982:385-409
|
CSCD被引
1
次
|
|
|
|
4.
Kukkonen J. Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta).
Environment Toxicology and Chemistry,1994,13(9):1457-1468
|
CSCD被引
3
次
|
|
|
|
5.
Landrum P F. Toxicokinetics and toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp: Examination of equilibrium-partitioning theory and residue-bases effects for assessing hazard.
Environmental Toxicology and Chemistry,1994,13(11):1796-1780
|
CSCD被引
6
次
|
|
|
|
6.
Suter G W.
Ecological Risk Assessment for Contaminated Sites,2000:26-29
|
CSCD被引
1
次
|
|
|
|
7.
刘良. 应用物种敏感性分布评估多环芳烃对淡水生物的生态风险.
生态毒理学报,2009,4(5):647-654
|
CSCD被引
35
次
|
|
|
|
8.
孔祥臻. 重金属对淡水生物生态风险的物种敏感性分布评估.
中国环境科学,2011,31(9):1555-1562
|
CSCD被引
38
次
|
|
|
|
9.
Schuler L J. Aquatic risk assessment of Herbicides in freshwater ecosystems of South Florida.
Archives of Environmental Contamination and Toxicology,2008,54(4):571-583
|
CSCD被引
11
次
|
|
|
|
10.
Rand G M. Endosulfan and its metabolite, endosulfan sulfate, in freshwater ecosystem of south Florida: a probabilistic aquatic ecological risk assessment.
Ecotoxicology,2010,19(5):879-900
|
CSCD被引
6
次
|
|
|
|
11.
邢立群. 中国主要河流中硝基苯生态风险研究.
中国环境科学,2011,31(2):301-306
|
CSCD被引
6
次
|
|
|
|
12.
金相灿.
中国湖泊环境(第二册),1995:86-88
|
CSCD被引
1
次
|
|
|
|
13.
Lange R. Analysis of the ecetoc aquatic toxicity database II-comparison of acute to chronic ratios for various acute to chronic ratios for various aquatic organisms and chemical substances.
Chemosphere,1998,36(1):115-127
|
CSCD被引
9
次
|
|
|
|
14.
Heger W. Acute and prolonged toxicity to aquatic organisms of new and existing chemicals and pesticides.
Chemosphere,1995,31(1):2702-2726
|
CSCD被引
6
次
|
|
|
|
15.
Van Vlaardingen P L A. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data.
RIVM report 601501028/2004,2004
|
CSCD被引
1
次
|
|
|
|
16.
Traas T P. The potentially affected fraction as measure of ecological risk.
Species Sensitivity Distributions in Ecotoxicology,2002:322-326
|
CSCD被引
1
次
|
|
|
|
17.
乔敏. 太湖梅梁湾沉积物中多环芳烃的生态和健康风险.
生态毒理学,2007,2(4):456-463
|
CSCD被引
1
次
|
|
|
|
18.
Yang Y. An approach to assess ecological risk for polycyclic aromatic hydrocarbons in surface water from Tianjin.
Journal of Environmental Science and Health Part A: Toxic Hazardous Substances Environmental Engineering,2006,41(8):1463-1482
|
CSCD被引
6
次
|
|
|
|
19.
USEPA.
Summary Report for the workshop on Monte Carlo analysis. Risk assessment forum EPA-630-R-96-010,1996
|
CSCD被引
1
次
|
|
|
|
20.
Qiao M. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China.
Environment International,2006,32(1):28-33
|
CSCD被引
50
次
|
|
|
|
|