中国对欧盟出口隐含碳及驱动因素:省级尺度分析
Embodied carbon emissions in China's exports to the European Union and driving factors: A provincial-scale analysis
查看参考文献35篇
文摘
|
本文构建中国分省-世界多区域嵌套投入产出表,从省级尺度测算中国对欧盟出口隐含碳排放,并利用结构分解分析进一步研究隐含碳变动的驱动因素.结果显示, 2017年中国对欧出口隐含碳排放为2.49亿吨,相当于中国碳排放总量2.45%;隐含碳的省级分布差异明显,江苏、广东、山东、河北、浙江、辽宁和内蒙古这七个千万吨以上的省份合计占56%;与欧盟碳边境调节机制直接相关的基础金属、金属制品、非金属矿物制品、化工业四个行业对欧出口隐含碳为2144万吨,占中国对欧出口隐含碳9%.从2012年到2017年,中国对欧出口隐含碳减少了1662万吨, 12个省份对欧出口隐含碳增加, 18个省份实现减少;生产结构效应或直接碳强度效应是绝大部分省份隐含碳变动的首要驱动因素.本文的研究结果可为中国管理隐含碳及未来应对欧盟碳边境调节提供一定的参考. |
其他语种文摘
|
This study constructs a Chinese provincial-world multi-regional nested input-output table to estimate China's embodied carbon emissions in exports to the European Union (EU) at the provincial scale, and furthers investigates the driving factors of embodied carbon emissions changes using structural decomposition analysis. The results show that China embodied carbon emissions in exports to the EU in 2017 were 249 MtCO_2, equivalent to 2.45% of China's carbon emissions. The provincial distribution of embodied carbon emissions varies significantly, with seven provinces - Jiangsu, Guangdong, Shandong, Hebei, Zhejiang, Liaoning, and Inner Mongolia which all exported more than 10 MtCO_2 - together accounting for 56% of China's total embodied carbon emissions in exports to the EU. The four industries directly related to the EU's carbon border adjustment mechanism - basic metals, metal products, non-metallic mineral products, and chemical industry - exported 21.44 MtCO_2 to the EU, accounting for 9% of China's total. From 2012 to 2017, China's embodied carbon emissions in exports to the EU decreased by 16.62 MtCO_2, with 12 provinces increasing their embodied carbon emissions and 18 provinces realizing a decrease. The production structure effect or the direct carbon intensity effect is the primary driving factor of embodied carbon emissions changes in most provinces. The results of this study could provide some references for China to manage embodied carbon emissions and address the EU's carbon border adjustment in the future. |
来源
|
系统工程理论与实践
,2024,44(8):2423-2433 【核心库】
|
DOI
|
10.12011/SETP2023-0953
|
关键词
|
投入产出模型
;
中欧贸易
;
隐含碳排放
;
省级尺度
;
碳边境调节
|
地址
|
1.
中国石油大学(北京)经济管理学院, 北京, 102249
2.
上海交通大学环境科学与工程学院, 上海, 200240
3.
清华大学能源环境经济研究所, 北京, 100084
4.
中国人民大学生态环境学院, 北京, 100872
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6788 |
学科
|
社会科学总论 |
基金
|
中国电力工程顾问集团有限公司重大科技专项"30·60"碳达峰碳中和系统解决方案研究子课题7
|
文献收藏号
|
CSCD:7790562
|
参考文献 共
35
共2页
|
1.
中华人民共和国海关总署.
海关统计数据在线查询平台,2023
|
CSCD被引
5
次
|
|
|
|
2.
IPCC.
Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change,2022
|
CSCD被引
19
次
|
|
|
|
3.
刘斌. 欧盟碳边境调节机制对中国出口的影响与对策建议.
清华大学学报(哲学社会科学版),2021,36(6):185-194
|
CSCD被引
11
次
|
|
|
|
4.
庞军. 欧盟碳边境调节机制对我国的影响及应对策略.
可持续发展经济导刊,2023(1):32-35
|
CSCD被引
3
次
|
|
|
|
5.
Ren Y N. The EU carbon border adjustment mechanism will exacerbate the economic-carbon inequality in the plastic trade.
Journal of Environmental Management,2023(332):117302
|
CSCD被引
2
次
|
|
|
|
6.
Xiao H. Carbon Emissions and Carbon Intensity in China's Exports: A Contrast of SRIO and GIRIO Methods.
Journal of Systems Science and Information,2015,3(6):499-512
|
CSCD被引
1
次
|
|
|
|
7.
Jakob M. Sharing responsibility for trade-related emissions based on economic benefits.
Global Environmental Change,2021,66:102207
|
CSCD被引
2
次
|
|
|
|
8.
王谋. 欧盟“碳边境调节机制”要点、影响及应对.
中国人口·资源与环境,2021,31(12):45-52
|
CSCD被引
13
次
|
|
|
|
9.
Li W. Analysis of China's steel response ways to EU CBAM policy based on embodied carbon intensity prediction.
Energy,2023,282:128812
|
CSCD被引
3
次
|
|
|
|
10.
Liu X K. Analysis of implicit carbon emissions in Sino-EU carbon-intensive products trade based on input-output model.
IOP Conference Series: Earth and Environmental Science. 330(3),2019:32038
|
CSCD被引
1
次
|
|
|
|
11.
庞军. 中欧贸易隐含碳排放及其影响因素——基于MRIO模型和LMDI方法的分析.
国际经贸探索,2014,30(11):51-65
|
CSCD被引
6
次
|
|
|
|
12.
闫云凤. 中欧贸易隐含碳及政策启示——基于投入产出模型的实证研究.
财贸研究,2012,23(2):76-82
|
CSCD被引
2
次
|
|
|
|
13.
张俊荣. 基于结构分解的北京能源强度影响因素研究.
系统工程理论与实践,2017,37(5):1201-1209
|
CSCD被引
5
次
|
|
|
|
14.
Hoekstra R. Comparing structural and index decomposition analysis.
Energy economics,2003,25(1):39-64
|
CSCD被引
47
次
|
|
|
|
15.
Wang Q. Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?.
Technological Forecasting and Social Change,2021,169:120805
|
CSCD被引
5
次
|
|
|
|
16.
Wang Q. Imbalance of carbon embodied in south-south trade: Evidence from China-India trade.
Science of the Total Environment,2020,707:134473
|
CSCD被引
1
次
|
|
|
|
17.
Su B. Input-output analysis of CO_2 emissions embodied in trade: The effects of spatial aggregation.
Ecological Economics,2010,70(1):10-18
|
CSCD被引
10
次
|
|
|
|
18.
韩梦瑶. 中国省域碳排放的国内外转移研究:基于嵌套网络视角.
中国科学:地球科学,2020,50(6):748-764
|
CSCD被引
14
次
|
|
|
|
19.
Wang H K. Trade-driven relocation of air pollution and health impacts in China.
Nature Communications,2017,8(1):738
|
CSCD被引
16
次
|
|
|
|
20.
李善同.
中国多区域投入产出模型: 1987-2017年,2023
|
CSCD被引
2
次
|
|
|
|
|