超声速燃烧中的特征尺度及影响因素
Characteristic scales and influential factors in supersonic combustion
查看参考文献30篇
文摘
|
针对超燃冲压发动机典型的飞行条件,分别以氢气、乙烯和煤油(由质量分数为0.8的正十烷和0.2的三甲基苯化学替代)作为燃料,分析了超声速燃烧中的特征尺度及其影响因素,给出了细致的超燃冲压发动机工作范围,并探讨了火焰面模型在超声速燃烧数值模拟中的适用性.结果表明:从氢气、乙烯到煤油,超燃冲压发动机工作范围依次减少,丹姆克尔数(Da)呈现量级的变化,火焰模式以旋涡小火焰为主,其中Taylor尺度起着关键性作用.同时也发现:相对于亚声速燃烧,在超声速燃烧的数值计算中,对能否采用火焰面模型还需要更加仔细的考虑. |
其他语种文摘
|
Using the hydrogen, ethylene and kerosene(chemically surrogated by a mixture of n-decane 0.8 and 1, 2, 4-trimethylbenzene 0.2 by mass fraction) as fuels, the characteristic scales in supersonic combustion and the related influence factors were analyzed, and the operating range of scramjet under the typical flight conditions was calculated. At last, the applicability of flamelet model for the numerical simulation of supersonic combustion was explored. The results show that the operating range of scramjet for these fuels decreases successively and Damkohler number (Da) varies boardly in the order of magnitude, and flamelet in eddies regime is usually the main part, where Taylor micro-scale plays an important role. At the same time, it is found that the flamelet model needs to be considered carefully in numerical simulation of supersonic combustion compared with subsonic combustion. |
来源
|
航空动力学报
,2013,28(7):1458-1466 【核心库】
|
关键词
|
超声速燃烧
;
火焰模式
;
湍流特征尺度
;
超燃冲压发动机工作范围
;
火焰面模型
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8055 |
学科
|
航空 |
基金
|
国家自然科学基金
;
国家自然科学基金创新研究群体项目
|
文献收藏号
|
CSCD:4886606
|
参考文献 共
30
共2页
|
1.
Corin S.
The scramjet engine processes and characteristics,2009
|
CSCD被引
3
次
|
|
|
|
2.
Lee S H. Characteristics of dual transverse injection in scramjet combustor:Part 2combustion.
Journal of Propulsion and Power,2006,22(5):1020-1026
|
CSCD被引
3
次
|
|
|
|
3.
Keistler P G. Simulation of supersonic combustion in three-dimensional configurations.
Journal of Propulsion and Power,2009,25(6):1233-1239
|
CSCD被引
1
次
|
|
|
|
4.
Jeong E. Investigation of supersonic combustion with angled injection in a cavity-based combustor.
Journal of Propulsion and Power,2008,24(6):1258-1268
|
CSCD被引
8
次
|
|
|
|
5.
Ben Y A. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows.
Physics of Fluids,2006,18(2):026101.1-026101.16
|
CSCD被引
1
次
|
|
|
|
6.
Rana Z A. Transverse jet injection into a supersonic turbulent cross-flow.
Physics of Fluids,2011,23(4):046103.1-046103.21
|
CSCD被引
6
次
|
|
|
|
7.
Ferrante A. LES of an inclined sonic jet into a turbulent crossflow at Mach 3. 6.
Journal of Turbulence,2011,12(2):1-32
|
CSCD被引
2
次
|
|
|
|
8.
Cecere D. Hydrogen/air supersonic combustion for future hypersonic vehicles.
International Journal of Hydrogen Energy,2011,36(18):11969-11984
|
CSCD被引
5
次
|
|
|
|
9.
姚强(译).
燃烧学导论:概念与应用,2009
|
CSCD被引
1
次
|
|
|
|
10.
Kritsuk A G. The statistics of supersonic isothermal turbulence.
The Astrophysical Journal,2007,665(1):416-431
|
CSCD被引
4
次
|
|
|
|
11.
Biagioni L.
Measurement of energy spectra in weakly compressible turbulence. AIAA 99-3516,1999
|
CSCD被引
1
次
|
|
|
|
12.
Ingenito A. Physics and regimes of supersonic combustion.
AIAA Journal,2010,48(3):515-525
|
CSCD被引
10
次
|
|
|
|
13.
庄礼贤.
流体力学,2009
|
CSCD被引
14
次
|
|
|
|
14.
Gruber M. Newly developed direct-connect high-enthalpy supersonic combustion research facility.
Journal of Propulsion and Power,2001,17(6):1296-1304
|
CSCD被引
6
次
|
|
|
|
15.
杨猛.
高速脉冲纹影系统在超声速燃烧室内流场显示中的初步应用. CSTAM 2011-2769,2011
|
CSCD被引
1
次
|
|
|
|
16.
杨猛.
高速脉冲纹影技术及其在超声速燃烧室流场显示中的应用,2012
|
CSCD被引
4
次
|
|
|
|
17.
Fan X J. Investigation of vaporized kerosene injection and combustion in a supersonic model combustor.
Journal of Propulsion and Power,2006,22(1):103-110
|
CSCD被引
18
次
|
|
|
|
18.
Macbride B J.
Coefficient for calculating thermodynamic and transport properties of individual species. NASA TM-4513,1993
|
CSCD被引
1
次
|
|
|
|
19.
Svehla R A.
Transport coefficients for the NASA lewis chemical equilibrium program. NASA TM-4647,1995
|
CSCD被引
1
次
|
|
|
|
20.
Smith G P.
Overview of CRI-mech,2012
|
CSCD被引
1
次
|
|
|
|
|