帮助 关于我们

返回检索结果

Adaptive Local Linear Quantile Regression

查看参考文献16篇

文摘 In this paper we propose a new method of local linear adaptive smoothing for nonparametric conditional quantile regression.Some theoretical properties of the procedure are investigated.,Then we demonstrate the performance of the method on a simulated example and compare it with other methods.The simulation results demonstrate a reasonable performance of our method proposed especially in situations when the underlying image is piecewise linear or can be approximated by such images.Generally speaking,our method outperforms most other existing methods in the sense of the mean square estimation (MSE)and mean absolute estimation (MAE)criteria.The procedure is very stable with respect to increasing noise level and the algorithm can be easily applied to higher dimensional situations.
来源 Acta Mathematicae Applicatae Sinica-English Series ,2011,27(3):509-516 【核心库】
DOI 10.1007/s10255-011-0087-5
关键词 quantile regression ; local linear regression ; adaptive smoothing ; automatic choice of window size ; Robustness
地址

Center for Applied Statistics,School of Statistics,Remin University of China, Beijing, 100872

语种 英文
文献类型 研究性论文
ISSN 0168-9673
学科 数学
基金 国家自然科学基金 ;  Major Project of Humanities Social Science Foundation of Ministry of Education ;  国家教育部重点项目 ;  北京市自然科学基金 ;  Graduate Research Foundation of Ren Min University of China Adaptive Composite Quantile Regression Model and Bootstrap Confidence Interval Theory and Applications
文献收藏号 CSCD:4218008

参考文献 共 16 共1页

1.  Cai Z W. Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models. Journal of the American Statistical Association,2008,103(484):1595-1608 CSCD被引 15    
2.  Fan J Q. Variable bandwidth and local linear regression smoothers. The Annals of Statistics,1992,20:2008-2036 CSCD被引 30    
3.  Fan J Q. Robust nonparametric function estimation. Scandinavian Journal of Statistics,1994,21:433-446 CSCD被引 4    
4.  Fan J Q. Local linear regression smoothers and their minimax efficiencies. The Annals of Statistics,1993,21:196-216 CSCD被引 43    
5.  Koenker R. Regression quantiles. Econometrica,1978,46:33-50 CSCD被引 393    
6.  Koenker R. Penalized triograms:total variation regularization for bivariate smoothing. Journal of the Royal statistical Society,Series B(Statistical Methodology),2004,66(1):145-163 CSCD被引 2    
7.  Polzehl J. Adaptive Weights Smoothing with applications to image restoration. Journal of the Royal statistical Society,Series B(Statistical Methodology),2000,62(2):335-354 CSCD被引 1    
8.  Polzehl,J. Varying coefficient regression modelling by adaptive weights smoothing,2003 CSCD被引 1    
9.  Probal Chaudhuri. Estimates of Regression Quantiles and Their Local Bahadur Representation. The Annals of Statistics,1991,19(2):760-777 CSCD被引 7    
10.  Tian M Z. Semiparametric Quantile modelling of Hierarchical Data. Acta Mathematica Sinica,2009,25:597-616 CSCD被引 6    
11.  Tian M Z. Saddle Point Approximation and Volatility Estimation of Value-at-Risk. Statistica Sinica,2010,20:1239-1256 CSCD被引 5    
12.  Tian M Z. Hierarchical linear regression models for conditional quantiles. Science in China Series A:Mathematics,2006,49:11-16 CSCD被引 11    
13.  Tsybakov A B. Robust reconstruction of functions by the local-approximation methods. Problems of Information Transmission,1986,22:133-146 CSCD被引 7    
14.  Young K. Tryong Asymptotic properties of kernel estimators based on local medians. The Annals of Statistics,1989,17:606-617 CSCD被引 1    
15.  Yu K. Local linear quantile regression. Journal of the American Statistical Association,1998,93:228-237 CSCD被引 26    
16.  Yu K M. Local linear additive quantile regression. Scandinavian Journal of Statistics,2004,31:333-346 CSCD被引 3    
引证文献 2

1 马学俊 基于Monte Carlo模拟比较K近邻和局部线性分位数回归 数学的实践与认识,2014,44(17):196-202
CSCD被引 0 次

2 Tian Maozai Adaptive quantile regression with precise risk bounds Science China. Mathematics,2017,60(5):875-896
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号