青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展
Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations
查看参考文献78篇
文摘
|
青藏高原位于中国西南部、亚洲中部,平均海拔高程大于4000 m,面积约300万km~2,是“世界屋脊”,与周边地区一起常被称为地球的“第三极”。青藏高原分布着约1200个面积大于1 km~2的湖泊,占中国湖泊数量与面积的一半;同时也是黄河、长江、恒河、印度河等大河的源头,被称为“亚洲水塔”。近几十年来,在全球变暖的背景下,青藏高原升温更加突出,其能量与水循环发生了显著变化,气候趋于暖湿化,冰川加速消融,湖面水位上升。湖泊是气候变化的重要指标,青藏高原湖泊分布密集、人为活动影响较小,多源遥感数据的广泛应用,为监测高原湖泊变化提供了难得的契机。本文依托国家自然科学基金青年项目“基于多源遥感的青藏高原内流区湖泊水量变化及水体相态转换研究(2000-2009年)”,主要研究进展为:初步查明了西藏高原的湖泊数量、面积及水位变化与时空格局,以及湖泊水量变化与水量平衡;探讨了湖泊变化对气候变化的响应。目前对青藏高原湖泊的变化及驱动因素虽有一些认识,但其定量的水量平衡及驱动机制还有待于进一步研究。这对了解世界第三极、一带一路国家和地区水资源状况与变化、生态文明和生态安全屏障建设具有重要的意义,同时也可为第三极国家公园的建立提供重要的科学基础。 |
其他语种文摘
|
The Tibetan Plateau (TP) is located in the southwest of China and central Asia, with a mean elevation higher than 4000 m and area of 3×10~6 km~2. It is named "the roof of the world". The TP and surrounding areas together is also called "the Third Pole". The TP has 1200 lakes greater than 1 km~2 in area, which accounts for approximately 50% of the total number and area of lakes in China. It is the sources of the Yellow River, the Yangtze River, the Indus, Ganges, Brahmaputra, Irrawaddy, Salween, and the Mekong, and therefor known as "Asia's water tower". In the past several decades, the TP experienced a faster warming than other regions in the world. The climate of the TP is also getting wetting. Lakes are indicators of climate change. The TP has the dense distribution of lakes with little disturbance of human activities. The utilization of multi-sensors’data has provided a useful tool to monitor lake change in the remote TP. Several studies of lake changes have been conducted focusing on the following scientific questions: (1) how many lakes are on the TP and what are the spatial and temporal changes of the number, area, and abundance of these lakes? (2) the increased mass over the TP from glaciers or lakes? (3) under anthropogenic warming, how did the water and cryosphere cycles change on the two adjacent largest Plateaus in the world, the Tibetan and the Mongolian Plateaus, over the last four decades? and (4) how did the lake water storage and water balance change? These studies are of great significance to the understanding of the third pole of the world, the state of regional water resources and changes, and ecological civilization and ecological security construction. They also provide an important scientific basis for the planning of the third polar national park. The quantitative understanding of lake water balance and mechanisms and driving factors of lake change needs further work in the future. |
来源
|
地理科学进展
,2018,37(2):214-223 【核心库】
|
DOI
|
10.18306/dlkxjz.2018.02.004
|
关键词
|
青藏高原
;
湖泊变化
;
气候变化
;
遥感
;
进展
|
地址
|
中国科学院青藏高原研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-6301 |
学科
|
地球物理学;大气科学(气象学) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6171411
|
参考文献 共
78
共4页
|
1.
骆剑承. 分步迭代的多光谱遥感水体信息高精度自动提取.
遥感学报,2009,13(4):610-615
|
CSCD被引
67
次
|
|
|
|
2.
Asoka A. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India.
Nature Geoscience,2017,10(2):109-117
|
CSCD被引
9
次
|
|
|
|
3.
Barnett T P. Potential impacts of a warming climate on water availability in snowdominated regions.
Nature,2005,438:303-309
|
CSCD被引
199
次
|
|
|
|
4.
Behrangi A. Using GRACE to constrain precipitation amount over cold mountainous basins.
Geophysical Research Letters,2017,44(1):219-227
|
CSCD被引
2
次
|
|
|
|
5.
Biskop S. Differences in the water-balance components of four lakes in the southerncentral Tibetan Plateau.
Hydrology and Earth System Sciences,2016,20(1):209-225
|
CSCD被引
13
次
|
|
|
|
6.
Bolch T. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009.
The Cryosphere,2010,4(3):419-433
|
CSCD被引
53
次
|
|
|
|
7.
Che T. Snow depth derived from passive microwave remote-sensing data in China.
Annals of Glaciology,2008,49:145-154
|
CSCD被引
129
次
|
|
|
|
8.
Chen J L. Groundwater storage changes: Present status from GRACE observations.
Surveys in Geophysics,2016,37(2):397-417
|
CSCD被引
14
次
|
|
|
|
9.
Coll C. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data.
Remote Sensing of Environment,2005,97(3):288-300
|
CSCD被引
20
次
|
|
|
|
10.
Cretaux J F. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data.
Advances in Space Research,2011,47(9):1497-1507
|
CSCD被引
40
次
|
|
|
|
11.
Crosman E T. MODIS-derived surface temperature of the Great Salt Lake.
Remote Sensing of Environment,2009,113(1):73-81
|
CSCD被引
14
次
|
|
|
|
12.
Dai L Y. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China.
Remote Sensing,2015,7(6):7212-7230
|
CSCD被引
52
次
|
|
|
|
13.
Feyisa G L. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery.
Remote Sensing of Environment,2014,140:23-35
|
CSCD被引
167
次
|
|
|
|
14.
Gardner A S. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009.
Science,2013,340:852-857
|
CSCD被引
104
次
|
|
|
|
15.
Immerzeel W W. Climate change will affect the Asian water towers.
Science,2010,328:1382-1385
|
CSCD被引
421
次
|
|
|
|
16.
IPCC.
Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change,2014:1132
|
CSCD被引
1
次
|
|
|
|
17.
Jacob T. Recent contributions of glaciers and ice caps to sea level rise.
Nature,2012,482:514-518
|
CSCD被引
105
次
|
|
|
|
18.
Ji L. Analysis of dynamic thresholds for the normalized difference water index.
Photogrammetric Engineering & Remote Sensing,2009,75(11):1307-1317
|
CSCD被引
35
次
|
|
|
|
19.
Jiang L G. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data.
Journal of Hydrology,2017,544:109-124
|
CSCD被引
24
次
|
|
|
|
20.
Kaab A. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas.
Nature,2012,488:495-498
|
CSCD被引
69
次
|
|
|
|
|