帮助 关于我们

返回检索结果

遥感影像混合像元分解及超分辨率重建研究进展
Mixed-pixel Decomposition and Super-resolution Reconstruction of RS Image

查看参考文献62篇

文摘 随着遥感应用的深入, 传统将遥感影像像元当作纯净像元的方式所带来的问题已经被广泛认识到, 混合像元分解的相关理论和技术成为遥感领域的一个热点问题。本文总结了混合像元分解及超分辨率影像重建的主要理论和方法。根据超分辨率影像重建的主要流程, 分别回顾了混合像元端元类型选择、端元丰度分解和超分辨率影像的重建, 并对相关模型和技术给出了总结和评价。端元类型选择是确定在影像范围包含的纯净地物类型, 重点介绍了基于统计学和几何学的两种方法。端元丰度估计是目前该领域研究最多的方向之一, 集中了很多新的理论和方法, 可变端元分解和盲源分解作为2种效果较好的方法在文中作了详细的回顾和评价。空间自相关性是对丰度估计的结果进行超分辨率重建的主要理论基础, 如何在丰度约束条件下最大化空间自相关性是大多数基于混合像元分解超分辨率重建的目标。最后, 文章在总结目前混合像元分解及超分辨率遥感影像理论发展的基础上, 给出了一些意见和展望, 指出考虑混合像元形成机理、综合多种模型及先验信息将有助于基于混合像元分解的超分辨率遥感影像研究。
其他语种文摘 Remote sensing technology has been used in a wide range of applications,but the mixed-pixel phenomenon has been a persistent problem.In traditional classification,every pixel is considered a pure pixel and can be classified as only one type. This affects the accuracy and precision of results in applications. Recently,the problem has been studied by many researchers who have adopted many models and methods to decompose mixed-pixels and reconstruct super-resolution images from the low-resolution originals.In this article,we give a literature review of the development of mixed-pixel decomposition and super-resolution reconstruction.In accord with the main flow in the process,three aspects are reviewed:(1)endmember selection,(2)abundance estimation,and(3)super-resolution reconstruction. Endmember selection aims at selecting pure objects in the whole image range. Statistical methods and geometrical methods have been covered in detail for endmember selection. Abundance estimation of endmembers in pixels is another vital step attracting a great deal of research.It involves a number of new models and methods.We put an emphasis on variable endmember spectral mixture analysis and blind sources separation methods,which perform well and seem promising. Super-resolution reconstruction is based on the result of abundance estimation. How to maximize the spatial auto-correlation is the main objective when reconstructing super-resolution images.We review the most commonly used pixel-swapping method at length and discuss some problems presented in the study. Finally,some suggestions are brought forward for the mixed-pixel decomposition and super-resolution reconstruction of RS images.
来源 地理科学进展 ,2010,29(6):747-756 【核心库】
关键词 端元选择 ; 丰度估计 ; 盲源分解 ; 混合像元分解 ; 超分辨率重建
地址

中国科学院地理科学与资源研究所, 中国科学院资源与环境信息系统国家重点实验室, 北京, 100101

语种 中文
文献类型 综述型
ISSN 1007-6301
学科 自然地理学
基金 国家自然科学基金 ;  国家863计划 ;  国家科技部国际合作项目 ;  中国科学院知识创新工程项目
文献收藏号 CSCD:3902182

参考文献 共 62 共4页

1.  赵英时. 遥感应用分析原理与方法,2003 CSCD被引 814    
2.  赖志斌. 高分辨率遥感卫星数据在城市生态环境评价中的应用模型研究. 地理科学进展,2000,19(4):359-365 CSCD被引 8    
3.  李亚云. 遥感技术在中国土地荒漠化监测中的应用进展. 地理科学进展,2009,28(1):55-62 CSCD被引 24    
4.  Woodcock C E. The factor of scale in remote sensing. Remote Sensing of Environment,1987,21(3):311-322 CSCD被引 109    
5.  Roberts D A. Green vegetation, nonphotosynthetic vegetation, and soils in aviris data. Remote Sensing of Environment,1993,44(2/3):255-269 CSCD被引 26    
6.  Smith M O. Vegetation in deserts:I.a regional measure of abundance from multispectral images. Remote Sensing of Environment,1990,31(1):1-26 CSCD被引 34    
7.  Small C. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing,2001,22(7):1305-1334 CSCD被引 80    
8.  Green A A. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing,1988,26(1):65-74 CSCD被引 154    
9.  Chang C I. A fast iterative algorithm for implementation of pixel purity index. IEEE Geoscience and Remote Sensing Letters,2006,3(1):63-67 CSCD被引 23    
10.  Plaza A. Fast implementation of pixel purity index algorithm. SPIE Symposium on Defense and Security, XI Conference on Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery,2005 CSCD被引 2    
11.  Bateson A. A method for manual endmember selection and spectral unmixing. Remote Sensing of Environment,1996,55(3):229-243 CSCD被引 19    
12.  Lelong C C D. Hyperspectral imaging and stress mapping in agriculture:A case study on wheat in Beauce(France). Remote Sensing of Environment,1998,66(2):179-191 CSCD被引 9    
13.  Nascimento J M P. Vertex component analysis:A fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):898-910 CSCD被引 183    
14.  Gruninger J. The sequential maximum angle convex cone(SMACC)endmember model. Proceedings SPIE, Algorithms for Multispectral and Hyper-spectral and Ultraspectral Imagery,2004 CSCD被引 1    
15.  Plaza A. An improved N-FINDR algorithm in implementation. SPIE Symposium on Defense and Security, XI Conference on Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery,2005 CSCD被引 2    
16.  夏学齐. 高光谱遥感图像的单形体分析方法. 中国图象图形学报,2004(12):1486-1491 CSCD被引 5    
17.  Bastin L. Comparison of fuzzy c-means classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing,1997,18(17):3629-3648 CSCD被引 13    
18.  Holben B N. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors. International Journal of Remote Sensing,1993,14(11):2231-2240 CSCD被引 3    
19.  Keshava N. Spectral unmixing. Signal Processing Magazine, IEEE,2002,19(1):44-57 CSCD被引 134    
20.  Ray T W. Nonlinear spectral mixing in desert vegetation. Remote Sensing Of Environment,1996,55(1):59-64 CSCD被引 10    
引证文献 12

1 王凌 6S辐射校正与像元分解结合提高苹果树花期冠层反射率反演精度 农业工程学报,2012,28(9):96-102
CSCD被引 1

2 吴昌广 USLE/RUSLE模型中植被覆盖管理因子的遥感定量估算研究进展 应用生态学报,2012,23(6):1728-1732
CSCD被引 24

显示所有12篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号