Al/PTFE与炸药组合装药的爆炸释能特性
Explosive Energy Release Characteristics of Composite Charges with Al/PTFE and Explosives
查看参考文献17篇
文摘
|
为探究Al/PTFE活性材料与高能炸药组合装药的爆炸释能特性,制备了3种包含不同组分和质量的Al/PTFE活性材料的组合装药样品,并进行了爆炸试验,测量了不同距离处的自由场入射冲击波超压,拍摄了活性材料抛撒、反应、火球扩展等过程的图像,通过与裸装药静爆试验进行对比,分析了活性材料的反应特性及对冲击波超压参量的增益机理。结果表明,活性材料抛撒过程中经历了自身反应、与爆轰产物的无氧反应以及铝粉等与空气的有氧反应,相比于裸装药,二次反应增大了爆炸火球半径并大幅延长了火光持续时间,在中远场范围内有效增强了冲击波,2.5m测点处冲击波超压和比冲量最大分别达到了裸装药的1.8倍和1.5倍,且铝粉浓度越高,增益比例相对越强,但随着传播距离增大,铝粉稀释,差异逐渐缩小;通过选用合适组分比例和质量的Al/PTFE活性材料,有益于弥补近场材料破碎和抛撒造成的冲击波能量损失,同时后燃反应为中远场提供能量补充,有望实现爆炸释能整体增益。 |
其他语种文摘
|
In order to investigate the energy release characteristics of the composite charge formed from Al/PTFE reactive materials and highly energetic explosive,three kinds of composite charge samples comprising Al/PTFE reactive materials with various components and mass ratios were prepared,and utilized to explosion tests.Free-field incident shock wave overpressure of several gauging points were measured.The process images of reactive materials scattering,reaction,and the fireball expansion were photographed.The reaction characteristics of reactive materials and the gain mechanism on the shock wave overpressure parameters were analyzed by comparing with the static explosion test of the bare charge.The results show that during the scattering process,reactive materials undergo self-reaction,anaerobic reaction with detonation products and aerobic reaction with ambient oxygen.Compared with bare charge,the secondary reaction enlarges the fireball and highly lengthens the duration of the flame,significantly enhances the shock wave simultaneously.At the gauging point of 2.5 meters,the maximum overpressure value and specific impulse are 1.8 times and 1.5 times of that the bare charge respectively,and the gain effect increases with the increase of aluminum contents in middle and far field range.However,the discrepancy narrows as the propagation distance increases due to the dilution of aluminum powders.By selecting the appropriate composition ratio and quality of Al/PTFE reactive materials,it is beneficial to compensate for the shock wave energy loss caused by the breaking and scattering of materials in the near field.Simultaneously,the after-burning reaction provides energy supplement for the middle and far fields,which is expected to achieve the overall gain of explosion energy release. |
来源
|
火炸药学报
,2023,46(1):69-75 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202205006
|
关键词
|
爆炸力学
;
Al/PTFE活性材料
;
组合装药
;
抛撒
;
二次反应
;
火球
;
冲击波
|
地址
|
1.
西安近代化学研究所, 陕西, 西安, 710065
2.
中国人民解放军96901部队, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
力学;武器工业 |
基金
|
国防军工基础科研稳定支持项目
|
文献收藏号
|
CSCD:7404885
|
参考文献 共
17
共1页
|
1.
孙承纬(译).
爆炸物理学,2011
|
CSCD被引
44
次
|
|
|
|
2.
Mao Y F. Rational design of gradient structured fluorocarbon/Al composites towards tunable combustion performance.
Combustion and Flame,2021,230:111436
|
CSCD被引
10
次
|
|
|
|
3.
陶俊. 金属-氟聚物机械活化含能材料的研究进展.
火炸药学报,2017,40(5):8-14
|
CSCD被引
11
次
|
|
|
|
4.
葛超. 基于气炮实验的PTFE/Al复合材料冲击反应阈值.
爆炸与冲击,2018,38(1):1-8
|
CSCD被引
8
次
|
|
|
|
5.
吕英迪. 核壳结构Al@PTFE复合材料的制备与性能研究.
火炸药学报,2021,44(6):811-818
|
CSCD被引
5
次
|
|
|
|
6.
Reinhart W. Equation of state of an Aluminum-Teflon mixture.
20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter,2017
|
CSCD被引
2
次
|
|
|
|
7.
Saikov I V. Energetic materials based on W/PTFE/Al:thermal and shock wave initiation of exothermic reactions.
Metals,2021,11(9):1355-1355
|
CSCD被引
3
次
|
|
|
|
8.
Yang X L. Investigation of the shock compression behaviors of Al/PTFE composites with experimental and a 3D mesoscale-model.
Defence Technology,2022(1):62-71
|
CSCD被引
4
次
|
|
|
|
9.
王辉. 含金属-氟聚物包覆层装药的内爆性能试验研究.
火炸药学报,2019,42(6):626-630
|
CSCD被引
6
次
|
|
|
|
10.
杜宁. 爆炸驱动典型活性材料能量释放特性研究.
爆炸与冲击,2020,40(4):44-53
|
CSCD被引
5
次
|
|
|
|
11.
Du N. Study on energy release characteristics of reactive material casings under explosive loading.
Defence Technology,2021,17(5):1791-1803
|
CSCD被引
7
次
|
|
|
|
12.
Dolgoborodov A Y. Detonation in an aluminum-Teflon mixture.
JETP LETTERS,2005,81(7):311-314
|
CSCD被引
18
次
|
|
|
|
13.
Sterletskii A N. Structure of mechanically activated high-energy Al+polytetrafluoroethylene nanocomposites.
Colloid Journal,2009,71(6):852-860
|
CSCD被引
7
次
|
|
|
|
14.
Trzcinski W A. Thermo-baric and enhanced blast explosives-properties and testing methods.
Propellants,Explosives,Pyrotechnics,2015,40:632-644
|
CSCD被引
20
次
|
|
|
|
15.
Chan S K. Reaction delay of aluminum in condensed explosives.
Propellants,Explosives,Pyrotechnics,2014,39:897-903
|
CSCD被引
3
次
|
|
|
|
16.
黄正祥.
终点效应,2014:111-118
|
CSCD被引
3
次
|
|
|
|
17.
陈亚红. 中心药爆炸抛撒金属颗粒群的速度分布.
弹道学报,2015,27(2):51-54
|
CSCD被引
2
次
|
|
|
|
|