分子印迹光子晶体的研究进展
Progress in molecular imprinted photonic crystals
查看参考文献108篇
文摘
|
光子晶体是至少两种不同折射率介质周期性排列而成的有序结构材料,通过改变其平均折射率或晶格间距等参数可以实现对光的调控。响应性光子晶体结构与分子印迹技术相结合制备的分子印迹光子晶体化学传感器因特异性强、灵敏度高且具有自表达能力等优点而受到人们的青睐,为微量及痕量物质的检测提供了新思路。本文着重介绍了基于二维和三维光子晶体的传感材料,尤其是分子印迹光子晶体(MIPC)的制备方法、性能特点和应用研究进展,对分子印迹光子晶体在可视化检测的研究前景做了展望,对提高分辨率、稳定性等问题做了分析。 |
其他语种文摘
|
Photonic crystal is a kind of ordered material which consists of two or more periodic arranged refractive index materials,and the propagation of light can be controlled by changing its average refractive index or lattice spacing.The molecularly imprinted photonic crystal chemical sensors based on the combination of responsive photonic crystal structure and molecular imprinting technique have attracted research interests due to their strong specificity,high sensitivity and self-expression ability, which also provide a novel strategy for the trace detection.In this review,the two-and threedimensional photonic crystal sensor materials were introduced,and the preparation,properties and applications of molecular imprinted photonic crystal(MIPC)were reviewed.The future research focus such as the improvement of resolution and repeatability of MIPC visual detection materials was analyzed and prospected at last. |
来源
|
材料工程
,2020,48(4):60-72 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2019.000539
|
关键词
|
光子晶体
;
分子印迹技术
;
传感器
;
自表达
|
地址
|
1.
上海第二工业大学工学部环境与材料工程学院, 上海, 201209
2.
上海第二工业大学资源循环科学与工程中心, 上海, 201209
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
晶体学;化学工业 |
基金
|
国家自然科学基金项目
;
上海第二工业大学研究生项目
|
文献收藏号
|
CSCD:6694219
|
参考文献 共
108
共6页
|
1.
John S. Strong localization of photons in certain disordered dielectric superlattices.
Physical Review Letters,1987,58(23):2486-2489
|
CSCD被引
1490
次
|
|
|
|
2.
Yablonovitch E. Inhibited spontaneous emission in solidstate physics and electronics.
Physical Review Letters,1987,58(20):2059-2062
|
CSCD被引
1758
次
|
|
|
|
3.
Chen C. Revealing invisible photonic printing:colorful pattern shown by water.
IOP Conference Series: Materials Science and Engineering,2017,167:012073
|
CSCD被引
2
次
|
|
|
|
4.
Zhang F S. A flexible imprinted photonic resin film templated by nanocrystalline cellulose for naked-eye recognition of sulfonamides.
Journal of Industrial and Engineering Chemistry,2017,58(25):172-178
|
CSCD被引
1
次
|
|
|
|
5.
Nguyen T D. Photonic hydrogels from chiral nematic mesoporous chitosan nanofibril assemblies.
Advanced Functional Materials,2016,26(17):2875-2881
|
CSCD被引
4
次
|
|
|
|
6.
Chen C. 2Dphotonic crystal hydrogel sensor for tear glucose monitoring.
ACS Omega,2018,3(3):3211-3217
|
CSCD被引
6
次
|
|
|
|
7.
Fu Q Q. Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors.
Advanced Functional Materials,2018,28(43):1804628
|
CSCD被引
7
次
|
|
|
|
8.
Fu Q Q. A polycrystalline SiO_2 colloidal crystal film with ultra-narrow reflections.
Chemical Communications,2015,51(34):7382-7385
|
CSCD被引
1
次
|
|
|
|
9.
Chen K. Multicolor printing using electric-field-responsive and photocurable photonic crystals.
Advanced Functional Materials,2017,27(43):1702825
|
CSCD被引
9
次
|
|
|
|
10.
Yin Z. Local field modulation induced three-order upconversion enhancement:combining surface plasmon effect and photonic crystal effect.
Advanced Materials,2016,28(13):2518-2525
|
CSCD被引
26
次
|
|
|
|
11.
Galisteolopez J F. 3D photonic crystals from highly monodisperse FRET-based red luminescent PMMA spheres.
Journal of Materials Chemistry: C,2015,3(16):3999-4006
|
CSCD被引
1
次
|
|
|
|
12.
Yablonovitch E. Photonic band structure:the face-centered-cubic case employing nonspherical atoms.
Physical Review Letters,1991,63(18):1950-1953
|
CSCD被引
1
次
|
|
|
|
13.
Ho K M. Existence of a photonic gap in periodic dielectric structure.
Physical Review Letters,1990,65(25):3152-3155
|
CSCD被引
206
次
|
|
|
|
14.
Zhang J T. Two-dimensional array debye ring diffraction protein recognition sensing.
Chemical Communications,2013,49(56):6337-6339
|
CSCD被引
6
次
|
|
|
|
15.
Yoshie T. High quality two-dimensional photonic crystal slab cavities.
Applied Physics Letters,2001,79(26):4289-4291
|
CSCD被引
7
次
|
|
|
|
16.
Knight J C. All-silica single-mode optical fiber with photonic crystal cladding:errata.
Optics Letters,1996,21(19):1547-1549
|
CSCD被引
429
次
|
|
|
|
17.
Blanco A. Largescale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres.
Nature,2000,405(6785):437-440
|
CSCD被引
85
次
|
|
|
|
18.
Qiu M. Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap.
Journal of the Optical Society of America:B,2000,17(6):1027-1030
|
CSCD被引
13
次
|
|
|
|
19.
Veselago V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability.
Soviet Physics Uspekhi,1968,10(4):509-514
|
CSCD被引
657
次
|
|
|
|
20.
Kosaka H. Superprism phenomena in photonic crystals.
Physical Review:B,1999,58(16):10096-10099
|
CSCD被引
2
次
|
|
|
|
|