应用物种敏感性分布评估DEHP对区域水生生态风险
Assessing aquatic ecological risk of DEHP by species sensitivity distributions
查看参考文献36篇
文摘
|
应用物种敏感性分布(Species Sensitivity Distribution,SSD)方法构建了邻苯二甲酸二辛酯(Diethylhexyl phthalate,DEHP)对淡水生物的SSD曲线。在此基础上,计算了DEHP对不同生物的5%危害浓度(HC_5),分析比较DEHP对不同生物类别的毒性敏感性差异及其特征,并针对在不同污染物质量浓度下,评价了我国不同地区水体DEHP对不同生物类别的生态风险。结果表明,不同物种对DEHP污染物的耐受范围存在差异,从小到大依次为无脊椎动物<脊椎动物<藻类,这可能与各物种的组别多样性有关,耐受范围越大,表示随着质量浓度增加,风险增大的趋势较缓慢;DEHP对不同物种的HC5从小到大依次为藻类<无脊椎动物<脊椎动物。HC_5越小,DEHP对该物种的生态风险越大,其中藻类对DEHP最敏感,其HC5为41.01μg·L~(-1),从总体上看,DEHP对淡水生物系统的HC_5为4 521.46μg·L~(-1);不同质量浓度值得出的PAF值的大小,反映不同类别生物的损害程度。质量浓度在1 000μg·L~(-1)以下,全部物种的PAF值几乎为0;当质量浓度达1 000μg·L(-1)时,藻类和无脊椎动物开始受到影响;当质量浓度达10 000μg·L~(-1)时,61.85%和88.04%的藻类和无脊椎动物分别受到影响,全部物种有64.34%受到影响。我国不同地区河流湖库水体水生态风险评估表明其水生态风险极低,PAF接近于0。 |
其他语种文摘
|
Species sensitivity distributions(SSD) method was used to assess the ecological risk of DEHP to freshwater organisms.The hazardous concentration for 5% of the species(HC_5) was calculated,and the distinguished character of hazardous concentrations of DEHP to different species was analyzed.The acute ecological risks of the DEHP and the sensitivity of different freshwater species were assessed in the different surface water body in China.The results showed that different organisms have different tolerance range of DEHP.That was in the order of vertebrates < invertebrates <algae.It may be associated with species biodiversity.The wider tolerance range of DEHP for organisms indicated that the increasing trend of ecological risk would slow down when the DEHP’s concentration increased.The HC5 to all the species from low to high was in the order of algae < invertebrates < vertebrates.The lower HC5 is,the higher ecological risk of DEHP to species is.Algae was the most sensitive specie among all the freshwater species with the HC_5of 41.01 μg·L~(-1).Meanwhile,the HC_5to all of the freshwater species came up to 4 521.46 μg·L-1.The value of PAF reflected the damage degree.When the concentration of DEHP was less than 1 000 μg·L~(-1),the value of PAF was proximity to zero.When met 1 000 μg·L-1,algae and invertebrates began to be affected.When came up to 10 000 μg·L~(-1),it would also impact 61.85% of vertebrates and 64.34% of all freshwater species,respectively.There was very low aquatic ecological risk(PAF was close to 0) by using SSD to assess the acute ecological risk assessment of DEHP from several surface water body in China. |
来源
|
生态环境学报
,2012,21(6):1082-1087 【核心库】
|
关键词
|
邻苯二甲酸二辛酯污染
;
水生态风险
;
物种敏感性分布
;
地表水
|
地址
|
环境保护部华南环境科学研究所, 广东, 广州, 510655
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论;环境质量评价与环境监测 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:4592149
|
参考文献 共
36
共2页
|
1.
Babich M A. Risk assessment of oral exposure to diisononyl phthalate from children’s products.
Regulatory Toxicology and Pharmacology,2004,40:151-167
|
CSCD被引
14
次
|
|
|
|
2.
Mckee R H. NTP center for the evaluation of risks to human reproduction reports on phthalates, addressing the data gaps.
Reproductive Toxicology,2004,18:1-22
|
CSCD被引
23
次
|
|
|
|
3.
Singh S. Phthalates: toxicogenomics and inferred human diseases.
Genomics,2011,97:148-157
|
CSCD被引
24
次
|
|
|
|
4.
Singh S. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects.
Gene,2012,494:85-91
|
CSCD被引
14
次
|
|
|
|
5.
US Environmental Protection Agency.
EPA-440/5-80-067Ambient water quality criteria for phthalate esters,1980
|
CSCD被引
1
次
|
|
|
|
6.
Koch H M. Di (2-ethylhexyl) phthalate (DEHP): human metabolism and internal exposure-an update and latest results.
International Journal of Andrology,2006,26(1):155-165
|
CSCD被引
30
次
|
|
|
|
7.
国家环境保护总局.
GB 3838—2002. 地表水环境质量标准,2002
|
CSCD被引
1
次
|
|
|
|
8.
胡习邦. 环境多介质中PCDD/Fs人群健康风险评价----以珠江三角洲为例.
生态环境学报,2011,20(2):311-316
|
CSCD被引
7
次
|
|
|
|
9.
Raimondo S. Protectiveness of species sensitivity distribution hazard concentration for acute toxicity used in endangered species risk assessment.
Environmental Toxicology and Chemistry,2008,27(12):2599-2607
|
CSCD被引
20
次
|
|
|
|
10.
Jensen J. European risk assessment of LAS in agricultural soil revisited: species sensitivity distribution and risk estimates.
Chemosphere,2007,69(6):880-892
|
CSCD被引
9
次
|
|
|
|
11.
吴丰昌. 镉的淡水水生生物水质基准研究.
环境科学研究,2011,24(2):172-184
|
CSCD被引
61
次
|
|
|
|
12.
Hose G C. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm and field data.
Archives of Environmental Contamination and Toxicology,2004,47(4):511-520
|
CSCD被引
55
次
|
|
|
|
13.
Kooijman S. A safety factor for LC50 values allowing for differences in sensitivity among species.
Water Research,1987,21(3):269-276
|
CSCD被引
59
次
|
|
|
|
14.
Hunt J. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon contaminated tidal estuary.
Environmental Toxicology and Chemistry,2010,29(5):1172-1181
|
CSCD被引
5
次
|
|
|
|
15.
Posthuma L.
Species sensitivity distributions in ecotoxicology,2002
|
CSCD被引
25
次
|
|
|
|
16.
Wheeler J R. Species sensitivity distributions: data and model choice.
Marine Pollution Bulletin,2002,45:192-202
|
CSCD被引
133
次
|
|
|
|
17.
Straalen Van N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc.
Environmental Toxicology and Pharmacology,2002,11(3/4):167-172
|
CSCD被引
25
次
|
|
|
|
18.
钟嶷盛. 北京公园水体中邻苯二甲酸酯类物质的测定及其分布特征.
中国环境监测,2010,26(3):60-64
|
CSCD被引
11
次
|
|
|
|
19.
陆继龙. 第二松花江中下游水体邻苯二甲酸酯分布特征.
环境科学与技术,2007,30(12):35-38
|
CSCD被引
26
次
|
|
|
|
20.
牛静萍. 黄河兰州段环境激素的污染水平.
环境与健康杂志,2006,23(6):527-529
|
CSCD被引
15
次
|
|
|
|
|