融合表面肌电和加速度信号的下肢运动模式识别研究
Lower Limb Motion Recognition Based on the Fusion of sEMG and Acceleration Signal
查看参考文献22篇
文摘
|
为了提高下肢运动模式识别率,本文设计了一种融合表面肌电和加速度信号的下肢运动模式识别方法.首先,用局部均值分解将表面肌电信号分解为多个乘积函数(Product Functions,PFs),再计算PF成分的多尺度排序熵.然后,通过拉普拉斯权重(Laplacian score,LS)特征选择算法选定每路肌电信号的一个尺度排序熵为特征,并把该特征和加速度信号的排序熵组成特征向量.最后,根据类内欧氏距离和类间样本分布,设计了改进的二叉树支持向量机,把特征向量输入该支持向量机进行下肢运动模式分类.实验结果表明所提方法对七个日常动作的平均识别率达到98.62%,相较于其他方法有较高的识别率. |
其他语种文摘
|
In order to improve the recognition rate of lower limb motion pattern,(a novel lower limb motion recognition method was designed by fusion of surface electromyography (sEMG) signal and acceleration signal.Firstly,the sEMG signal was decomposed into a set of product functions(PFs)by Local mean decomposition(LMD),and the multiscale permutation entropy(MPE) of PFs was calculated.Then,one scale permutation entropy was selected as the feature of sEMG by the Laplacian score.The feature vector is composed by this sEMG feature and the permutation entropy of acceleration signal.Finally,based on the combination of inter-class Euclidean distance and intra-class sample distribution,an improved support vector machine based binary tree(ISVM-BT) was designed.The feature vector was inputted into this SVM to recognize the lower limb motion.The experimental results indicate that the proposed method achieved 98.62% at the average recognition rate for seven daily activities,and has higher accuracy than other methods. |
来源
|
电子学报
,2017,45(11):2735-2741 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2017.11.022
|
关键词
|
下肢运动模式识别
;
表面肌电信号
;
加速度信号
;
多尺度排序熵
;
改进二叉树支持向量机
|
地址
|
杭州电子科技大学智能控制与机器人研究所, 浙江, 杭州, 310018
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
浙江省自然科学基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:6119194
|
参考文献 共
22
共2页
|
1.
Langhorne P. Stroke rehabilitation.
The Lancet,2011,377(9778):1693-1702
|
CSCD被引
49
次
|
|
|
|
2.
彭亮. 康复机器人的同步主动交互控制与实现.
自动化学报,2015,41(11):1837-1846
|
CSCD被引
18
次
|
|
|
|
3.
Mohamaddan S. Musculoskeletal analysis of upper limb rehabilitation robot prototype.
Applied Mechanics and Materials,2016,833:196-201
|
CSCD被引
1
次
|
|
|
|
4.
丁其川. 基于表面肌电的运动意图识别方法研究及应用综述.
自动化学报,2016,42(1):13-25
|
CSCD被引
79
次
|
|
|
|
5.
谢燕江. 应用小波变换去除膈肌肌电图信号中的心电干扰.
电子学报,2010,38(2):366-370
|
CSCD被引
8
次
|
|
|
|
6.
Popovic M R. Surface-stimulation technology for grasping and walking neuroprostheses.
IEEE Engineering in Medicine and Biology Magazine,2001,20(1):82-93
|
CSCD被引
7
次
|
|
|
|
7.
Taherkhani F. Permutation entropy and detrend fluctuation analysis for the natural complexity of cardiac heart interbeat signals.
Physica A:Statistical Mechanics and its Applications,2013,392(14):3106-3112
|
CSCD被引
3
次
|
|
|
|
8.
Li X L. Estimating coupling direction between neuronal populations with permutation conditional mutual information.
NeuroImage,2010,52(2):497-507
|
CSCD被引
8
次
|
|
|
|
9.
Wu S D. Bearing fault diagnosis based on multiscale permutetion entropy and support vector machine.
Entropy,2012,14(8):1343-1356
|
CSCD被引
17
次
|
|
|
|
10.
Karantonis D M. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring.
IEEE Transactions on Information Technology in Biomedicine,2006,10(1):156-167
|
CSCD被引
23
次
|
|
|
|
11.
Irene S. Improving classification of sit,stand,and lie in a smartphone human activity recognition system.
IEEE International Conference on Computer and Information Technology,2015:1460-1466
|
CSCD被引
1
次
|
|
|
|
12.
Cheong S. Support vector machines with binary tree architecture for multi-class classification.
Neural Inform Process,2004,2(3):47-51
|
CSCD被引
2
次
|
|
|
|
13.
Cheng J. A rotating machinery fault diagnosis method based on local mean decomposition.
Digital Signal Process,2012,22(2):356-366
|
CSCD被引
32
次
|
|
|
|
14.
Aziz W. Multiscale permutation entropy of physiological time series.
9th International Multitopic Conference,2005:1-6
|
CSCD被引
1
次
|
|
|
|
15.
Christoph B. Permutation entropy:a natural complexity measure for time series.
Physical Review Letters,2002,88(17):1-5
|
CSCD被引
299
次
|
|
|
|
16.
Matilla Garcia M. A non-parametric test for independence based on symbolic dynamics.
Journal of Economic Dynamics & Control,2007,31(12):3889-3903
|
CSCD被引
6
次
|
|
|
|
17.
Yan R. Permutation entropy:a nonlinear statistical measure for status characterization of rotary machines.
Mechanical Systems & Signal Processing,2012,29(5):474-484
|
CSCD被引
53
次
|
|
|
|
18.
Gjorgjevikj D. Evaluation of distance measures for multi-class classification in binary SVM decision tree.
Artificial Intelligence & Soft Computing,2010,6113(6):437-444
|
CSCD被引
1
次
|
|
|
|
19.
Tang F M. On multiclass classification methods of support vector machines.
Control and Decision,2005:746-749
|
CSCD被引
1
次
|
|
|
|
20.
Joarder K. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
IEEE Transactions on Biomedical Engineering,2007,53(12):2479-2490
|
CSCD被引
1
次
|
|
|
|
|