高寒矮嵩草草甸大气—土壤—植被—动物系统碳素储量及碳素循环
The carbon storage and carbon cycle among the atmosphere, soil, vegetationi and animal in the Kobresia humilis alpine meadow ecosystem
查看参考文献25篇
文摘
|
对高寒矮嵩草草甸生态系统中大气—土壤—植被—动物分室碳素储量及碳素循环进行了研究,结果表明,草毡寒冻雏形土土壤库0-30cm碳素储量为247.30tC/hm^2。土壤CO2平均释放速率70.94±54.76kg/(hm^2·d),年释放量为6.630tC/(hm^2·a),比退化草地4.620tC/(hm^2·a)释放量高。植物包括根系总固碳量为4.648tC/(hm^2·a),动物亚系统中,藏系绵羊个体同化的碳素为7.562kg C/(hm^2·a)(成年羊),作为畜产品迁出生态系统。生态系统初级生产固碳量占每年土壤CO2释放量的70.16%,占生长季土壤CO2释放量的96.43%,退化草地土壤CO2释放量比初级生产固碳量要低。认为高寒矮嵩草草甸生态系统土壤是大气温室气体CO2的小的排放源。 |
其他语种文摘
|
Qing-Tibet Plateau is the highest land in the world as well as one of the most sensitive regions to global change. In order to discover its role in global warming, the carbon storage and carbon cycle were conducted at the Haibei Alpine Meadow Ecosystem Research Station, Chinese Academy of Sciences for three years (1998~2000). COZ concentration was tested with CID-301PS photosynthesis apparatus .The Kobresia humilis alpine meadow ecosystem was divided into four compartments: atmosphere, plant, soil and animal. The C02 concentration was measured only in the air of plant canopy (20 cm above the ground). In soil compartment, organic carbon storage, physical and chemical properties of soil were assayed at 0~10 cm, 10--20 cm and 20 - 30 cm in Mat Cryic Cambisols soil. Moreover, the C,Q> releasing rate and amount were also measured. The results indicated that the carbon storage was 247. 30 t C/hnr in 0~30 cm soil depth and the average emission rate of carbon dioxide of soil was 70. 94 + 54. 76 kg/(hnr ? d). The emission quantity of COj was 6. 63 t C/(hnr ? a) from soil, but it appeared negative in winter. It was higher than that in degraded areas (4. 62 t C/dirn* ? a)). The fixed carbon of the plant was 4. 648 t C/(hm2 ? a) calculated through analysis of the biomass and content of carbon of plant aboveground and underground. We further calculated the result of carbon metabolism moving out of ecosystem and released into the atmosphere of every mature Tibetan sheep through an analysis of the content of protein, fat and hydrocarbon. The carbon assimilated by Tibetan sheep was 7- 562 kg C/(hnr ? a) transferred out from this ecosystem as livestock products. The fixed carbon by animal compartment occupied a small part in the ecosystem. It could be neglected. The total amount of fixed carbon was 70. 16% of the annual soil emission and covered 96.43% of that in the plant growing season. So the carbon balance could be calculated in the alpine meadow ecosystem. According to the formula, the result of net productivity of the ecosystem was below zero. The carbon released from the soil was more than that of primarily net productivity. It may suggest that the greenhouse gas CO2 was a small releasing source in the alpine meadow ecosystem. |
来源
|
生态学报
,2003,23(4):627-634 【核心库】
|
关键词
|
草毡寒冻雏形土
;
碳素储量
;
碳素循环
;
矮嵩草草甸
;
生态系统
|
地址
|
中国科学院西北高原生物研究所, 青海, 西宁, 810001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0933 |
学科
|
植物学 |
基金
|
国家973计划
;
中国科学院知识创新工程项目
;
国家自然科学基金
;
中国科学院海北高寒草甸生态系统实验站基金
|
文献收藏号
|
CSCD:1217431
|
参考文献 共
25
共2页
|
1.
Houghton J T. The scienc e of climate change.
The science of climate change, Climate Change,1996:467
|
CSCD被引
1
次
|
|
|
|
2.
Christensen T R. On the potential C O??2 rel ease from tundra soils in a changing climate.
Applied Soil Ecology,1999,11:127-134
|
CSCD被引
18
次
|
|
|
|
3.
Oechel W C. Recent change of arct ic tun dra ecosystems from a net carbon dioxide sink to a source.
Nature,1993,361:520-523
|
CSCD被引
35
次
|
|
|
|
4.
杨昕. 地-气间碳通量气候响应的模拟Ⅰ.
近百年来气候变化,2002,22(2):270-277
|
CSCD被引
1
次
|
|
|
|
5.
Dai A. Can climate variability contribute to the "missing"CO ??2 sink ??? Global Biogeochem.
Global Biogeochem. Cycles,1993,7:599-609
|
CSCD被引
17
次
|
|
|
|
6.
王效科. 全球碳循环中的失汇及其形成原因.
生态学报,2002,22(1):94-103
|
CSCD被引
51
次
|
|
|
|
7.
Battle M. Global carbon sinks and their va riability inferred from atmospheric O??2 and δ???? 13??C.
Science,2000,287:2467-2470
|
CSCD被引
52
次
|
|
|
|
8.
Frank A B. Carbon dioxide fluxes over a northern semiarid mix ed-grass prairie.
Agricultural and Forest Meteorology,2001,108:317-326
|
CSCD被引
28
次
|
|
|
|
9.
林而达. 全球气候变化和温室气体清单编制方法.
全球气候变化和温室气体清单编制方法,1997:1-11
|
CSCD被引
2
次
|
|
|
|
10.
Dennis S O. Modeling the effects of climatic and CO??2 changes on grass land storage of soil C.
Water, Air, and Soil Pollution,1993,70:643-657
|
CSCD被引
1
次
|
|
|
|
11.
Matthias D. Transient enhancement of carbon uptake in a n alpi ne grassland ecosystem under elevated CO??2.
Arctic and Alpine Research,1998,30(4):381-387
|
CSCD被引
1
次
|
|
|
|
12.
Steven F O. Diurnal and seasonal Pat terns of e cosystem CO??2 efflux From upland tundra in the foothills of the brooks range.
Arctic and Alpine Research,1996,28(3):328-338
|
CSCD被引
3
次
|
|
|
|
13.
Michaelson G J. Carbon storage and distribution in tundra soil s of Arctic Alaska.
Arctic and Alpine Research,1996,28(4):414-424
|
CSCD被引
6
次
|
|
|
|
14.
高晓清. 青藏高原北部若干地点10年尺度气候变化的初步分析.
青藏高原形成演化、环境变迁与生态系统研究,1994:297-303
|
CSCD被引
3
次
|
|
|
|
15.
李英年. 近40年海北高寒草甸生态系统定位站气温变化特征.
资源生态环境网络动态,1999,103:28-31
|
CSCD被引
3
次
|
|
|
|
16.
张金霞. 草毡寒冻雏形土CO_2释放特征.
生态学报,2001,21(4):544-549
|
CSCD被引
37
次
|
|
|
|
17.
皮南林. 高寒草甸生态系统绵羊种群能量动态的研究.
高寒草甸生态系统第1集,1982:117-122
|
CSCD被引
1
次
|
|
|
|
18.
赵新全. 反刍动物气体能量代谢研究.
高寒草甸生态系统国际学术讨论会论文集,1989:117-122
|
CSCD被引
1
次
|
|
|
|
19.
温玉璞. 瓦里关山大气二氧化碳浓度变化及地表排放影响的研究.
应用气象学报,1997,8(2):129-136
|
CSCD被引
36
次
|
|
|
|
20.
王启基. 高寒矮嵩草草甸底下生物量形成规律的初步研究.
高寒草甸生态系统国际学术讨论会论文集,1988:73-82
|
CSCD被引
14
次
|
|
|
|
|