基于双前馈+双神经网络自适应快速反射镜的解耦控制
Decoupling control of fast steering mirror based on dual feedforward + dual neural network adaptive
查看参考文献12篇
文摘
|
基于柔性铰链结构支撑和音圈电机驱动的两轴快速反射镜是一个两输入两输出强耦合系统, X轴和Y轴间的耦合大幅降低了反射镜的定位精度,采用传统的PID控制算法很难实现高精度的解耦控制。针对中心对称和轴对称结构形式的两轴快速反射镜,理论分析了两轴快速反射镜耦合来源-直流耦合分量和非直流耦合分量;建立了X轴和Y轴间的耦合物理模型;提出的双前馈+双神经网络自适应解耦控制算法分别补偿直流耦合分量和非直流耦合分量。实验结果表明:该控制算法与传统的PID控制算法相比,耦合度从5%左右降低到1.0‰以内,从而定位精度从2.5%左右提高到0.5‰以内。 |
其他语种文摘
|
Two-axis fast steering mirror based on flexure hinge support and voice coil motor drive is a strong coupling system with two inputs and two outputs. The coupling between X-axis and Y-axis greatly reduces the positioning accuracy of the fast steering mirror. It is difficult to achieve high precision decoupling control by using traditional PID control algorithm. Based on the centrosymmetric and axisymmetric two-axis fast steering mirror, the coupling sources of the two-axis fast steering mirror-DC coupling component and non-DC coupling component were analyzed theoretically, and the coupling physical model of between X-axis and Y-axis was established. A dual feedforward + dual neural network adaptive decoupling control algorithm was proposed to respectively compensate DC coupling components and non-DC coupling components. Experimental results show that, compared with the traditional PID control algorithm, the coupling degree of the proposed algorithm is reduced from about 5% to less than 1.0‰, which significantly improves the positioning accuracy from about 2.5% to less than 0.5‰. |
来源
|
红外与激光工程
,2021,50(11):20210194 【核心库】
|
DOI
|
10.3788/IRLA20210194
|
关键词
|
两轴快速反射镜
;
双前馈
;
双神经网络自适应
;
解耦
;
定位精度
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院空间精密测量重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
青岛海洋科学与技术试点国家实验室, 青岛海洋科学与技术试点国家实验室, 山东, 青岛, 266237
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
系统科学 |
基金
|
中国科学院战略高技术创新项目
|
文献收藏号
|
CSCD:7105591
|
参考文献 共
12
共1页
|
1.
马佳光. 捕获跟踪与瞄准系统的基本技术问题.
光电工程,1989(3):1-42
|
CSCD被引
42
次
|
|
|
|
2.
Ma Jiaguang. Review of compound axis servomechanism tracking control technology.
Infrared and Laser Engineering. (in Chinese),2013,42(1):218-227
|
CSCD被引
11
次
|
|
|
|
3.
Brown D C. Flexure pivots for oscillatory scanners.
Proceedings of SPIE-The International Society for Optical Engineering. 4773,2002:12-26
|
CSCD被引
1
次
|
|
|
|
4.
Kluk D J.
An advanced fast steering mirror for optical communication,2007
|
CSCD被引
10
次
|
|
|
|
5.
Lu Yafei.
Research on fast/fine steering mirror system. (in Chinese),2009
|
CSCD被引
2
次
|
|
|
|
6.
Wu Songhang. Multi-objective optimal design of elliptic flexible hinge in fast steering mirror.
Infrared and Laser Engineering. (in Chinese),2021,50(4):20200286
|
CSCD被引
3
次
|
|
|
|
7.
Ai Zhiwei. Integrative design of structure control for two-axis fast steering mirror with flexible support.
Infrared and Laser Engineering. (in Chinese),2020,49(7):20190479
|
CSCD被引
3
次
|
|
|
|
8.
Wang Kaidi. Time-frequency characteristics optimal control of fast steering mirror for image motion compensation.
Infrared and Laser Engineering,2018,47(S1):S120003
|
CSCD被引
2
次
|
|
|
|
9.
Wang H. Observer-based neural adaptive control for a class of MIMO delayed nonlinear systems with input nonlinearities.
Neurocomputing,2017,275:1988-1997
|
CSCD被引
4
次
|
|
|
|
10.
Mastorocostas. A recurrent fuzzyneural model for dynamic system identification.
IEEE Transactions on Systems, Man & Cybernetics-Part B: Cybernetics,2002,32(2):176-190
|
CSCD被引
10
次
|
|
|
|
11.
Zhu Lu. Design of neural network adaptive controller for aircraft formation.
Tactical Missile Technology. (in Chinese),2019(5):58-63
|
CSCD被引
1
次
|
|
|
|
12.
Dang Xuanju. Feedforward-based double neural network decoupling control for two-dimensional linear motor.
Computer Simulation. (in Chinese),2014,31(8):342-346
|
CSCD被引
1
次
|
|
|
|
|