杭州市人口密度空间分布及其演化的模型研究
Modeling the spatial distribution of urban population density and its evolution in Hangzhou
查看参考文献28篇
文摘
|
基于四次人口普查数据,本文探讨了杭州城市人口密度的空间分布及其演化规律。首先提取了不同年份城市人口密度的空间分布数据;然后根据人口分布的曲线特征对各种可能出现的数学模型进行拟合、比较,发现杭州市的人口分布服从Clark模型的修正形式——加幂指数模型;借助模型参数进行城市增长及其空间动力学分析,发现反映信息熵的约束参数波动升高、渐次逼近于1,从而揭示:改革开放以来,随着城市演化过程中自组织能力的加强以及郊区化的发展,城市空间复杂性程度增高,城市内各功能单元的效用增强,城市的空间结构进一步趋向新的有序状态。本文借助前沿科学思想及郊区化理论,尝试提出一个分析城市人口时空变化规律的完整范例,对城市规划和管理工作也具借鉴意义。 |
其他语种文摘
|
The evolution of urban morphology in the process of urban growth is one of the theoretical frontier issues, while the spatial-temoral structure of the distribution of urban population density is one of the important contents of urban growth. Combining with data of the previous censuses (the second census in 1964, the third one in 1982 and the fourth one in 1990), the author uses data of the Fifth Census of Hangzhou to study the models of spatial distribution of population density and its evolution in Hangzhou for more than 30 years systematically. First of all, the author transforms data of population census into spatial data by using the map of Hangzhou, and extracts data of urban population density distribution of different years. Then seven kinds of models are tested, including the linear one, the exponential one, the logarithmic one, the power one, the lognormal one, the power-exponential one and the second degree exponential one. With a viewpoint of the whole tendency, the power-exponential model, as an amended form of the negative exponential model, can describe spatial distribution of urban population density of Hangzhou well. The parameter σ reflects the tendency of changes of information entropy of urban geographic system. The parameter σ fluctuates, increases and approaches 1, indicating that the power-exponential distribution of urban population density evolves into the ideal Clark (negative exponential) one with the lapse of time. The analysis of urban growth and its spatial dynamics shows that the spatial complexity and the utility of Hangzhou's function unit increase, and that urban spatial structure tends to be in a new order with the increase of urban ability as a self-organization and the development of suburbanization. As a result of regression, we can't get a model like that of Newling, and there isn't any tidal wave of expansion in the development of spatial distribution of population density in Hangzhou within the past several decades, so it is easy to draw a conclusion that there is a large gap between Chinese cities and western ones in multi-nucleus morphology and process of suburbanization. |
来源
|
地理研究
,2002,21(5):635-646 【核心库】
|
关键词
|
城市增长
;
城市人口密度
;
城市空间结构
;
效区化
;
信息熵
;
杭州市
|
地址
|
北京大学城市与环境学系, 北京, 100871
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0585 |
学科
|
自然地理学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:988458
|
参考文献 共
28
共2页
|
1.
Batty M.
Fractal Cities: A Geometry of Form and Function,1994
|
CSCD被引
50
次
|
|
|
|
2.
Frankhouser P.
La Fractalitedes Structures Urbaines,1994
|
CSCD被引
1
次
|
|
|
|
3.
刘继生. 城镇体系空间结构的分形维数及其测算方法.
地理研究,1999,18(2):171-178
|
CSCD被引
104
次
|
|
|
|
4.
White R. Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns.
Environment and Planning A,1993,25:1175-1199
|
CSCD被引
163
次
|
|
|
|
5.
White R. The use of constrained cellular automata for high-resolution modeling of urban-land dynamics.
Environment and Planning B: Planning and Design,1997,24:323-343
|
CSCD被引
70
次
|
|
|
|
6.
薛领. 复杂性科学理论与区域空间演化模拟研究.
地理研究,2002,21(1):79-88
|
CSCD被引
20
次
|
|
|
|
7.
刘继生. 基于GIS的细胞自动机模型与人地关系的复杂性探讨.
地理研究,2002,21(2):155-162
|
CSCD被引
30
次
|
|
|
|
8.
Lee Y. An allometric analysis of the US urban system: 1960-80.
Environment and Planning A,1989,21:463-476
|
CSCD被引
49
次
|
|
|
|
9.
Benguigui L. City growth as a leap-frogging process: an application to the Tel-Aviv metropolis.
Urban Studies,2001,38(10):1819-1839
|
CSCD被引
9
次
|
|
|
|
10.
Benguigui L. When and where is a city fractal?.
Environment and Planning: Planning and Design,2000,27:507-519
|
CSCD被引
58
次
|
|
|
|
11.
Cadwallader M T. Urban Geography: An Analytical Approach.
Urban Geography: An Analytical Approach,1996
|
CSCD被引
4
次
|
|
|
|
12.
Wang F H. Modeling urban population densities in Beijing 1982-90: suburbanisation and its causes.
Urban Studies,1999,36(2):271-287
|
CSCD被引
27
次
|
|
|
|
13.
陈彦光. 城市人口密度衰减的分形模型及其异化形式—对Clark模型和Sherratt模型的综合与发展.
信阳师范学院学报(自然科学版),1999,12(1):60-64
|
CSCD被引
18
次
|
|
|
|
14.
陈彦光. 城市人口空间分布函数的理论基础与修正形式──利用最大熵方法推导关于城市人口密度衰减的Clark模型.
华中师范大学学报(自然科学版),2000,34(4):489-492
|
CSCD被引
12
次
|
|
|
|
15.
沈建法. 90年代上海市中心城人口分布及其变化趋势的模型研究.
中国人口科学,2000(5):45-52
|
CSCD被引
22
次
|
|
|
|
16.
Clark C. Urban population densities.
Journal of Royal Statistical Society,1951,114:490-496
|
CSCD被引
110
次
|
|
|
|
17.
Sherratt G G. A model for general urban growth.
Management Sciences, Model and Techniques: Proceedings of the Sixth International Meeting of Institute of Management Sciences (Vol. 2),1960:147-159
|
CSCD被引
1
次
|
|
|
|
18.
Tanner J C. Factors affecting the amount travel.
Road Research Technical Paper No. 51, HMSO (Department of Scientific and Industrial Research),1961
|
CSCD被引
1
次
|
|
|
|
19.
Smeed R J. The traffic problem in towns.
Manchester Statistical Society Papers,1961
|
CSCD被引
6
次
|
|
|
|
20.
Parr J B. Aspects of lognormal function in the analysis of regional population distribution.
environment and Planning A,1989,21:961-973
|
CSCD被引
1
次
|
|
|
|
|