湘南上堡花岗岩中电气石LA-MC-ICPMS原位微区硼同位素分析及地质意义
LA-MC-ICPMS in-situ boron isotope analyses of tourmalines from the Shangbao granites (southern Hunan Province) and its geological significance
查看参考文献65篇
文摘
|
电气石的 LA-MC-ICPMS 原位微区硼同位素分析方法是最近几年新兴的一种高效经济的硼同位素分析方法。对上堡晚白垩世含电气石二云母花岗岩的电气石进行 LA-MC-ICPMS 原位微区的硼同位素研究发现,其具有非常均一的~(11)B/~(10)B比值(3.9908~3.9979)和δ~(11)B值(加权平均为(-12.86±0.19)‰)。结合区域地质资料以及其他已有的硼同位素资料,提出上堡花岗岩中硼来源于沉积岩,可能的源区是邻近花岗岩体的石炭-二叠系的沉积地层或深埋在地壳中的沉积物质。在晚白垩世,华南处于伸展的背景中,幔源岩浆的底侵带来的巨大的热源使地壳中的沉积物质发生熔融,形成强过铝质的花岗质浆,在岩浆演化的晚期形成电气石。 |
其他语种文摘
|
LA-MC-ICPMS tourmaline in-situ boron (B) isotope analysis method, which is very efficient and economic, was newly established in recent few years. The LA-MC-ICPMS tourmaline in-situ B isotope analyses for the Shangbao tourmaline-bearing two mica granites exhibit that these tourmalines have very constant ~(11)B/~(10)B ratios (3.9908-3.9979) and δ~(11)B values (Mean= (-12.86±0.19)‰). Combined with regional geological data and other previous boron isotope data, we infer that the B element of the Shangbao granites was probably derived from sedimentary rocks, and a possible source was the Carboniferous or Permian sedimentary strata which is near to the Shangbao pluton, or sedimentary materials which were deeply buried in the crust. During Late Cretaceous, as the whole South China Block was under an extensional setting, the underplating mantle-derived magmas heated the overlying sedimentary materials, resulting in their partial melting and the generation of strongly peraluminous magmas. The tourmaline crystallized during the late stage of the evolution of these magmas. |
来源
|
地球化学
,2014,43(1):11-19 【核心库】
|
关键词
|
LA-MC-ICPMS
;
原位硼同位素
;
电气石
;
上堡花岗岩
;
华南
|
地址
|
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:5046447
|
参考文献 共
65
共4页
|
1.
McDonough W F. The composition of the Earth.
Chem Geol,1995,120(9):223-253
|
CSCD被引
1247
次
|
|
|
|
2.
Ryan J G. The systematics of boron abundances in young volcanic rocks.
Geochim Cosmochim Acta,1995,57(16):1489-1498
|
CSCD被引
11
次
|
|
|
|
3.
Dutrow B L. Tourmaline: A geologic DVD.
Elements,2011,7(5):301-306
|
CSCD被引
17
次
|
|
|
|
4.
Barth S. Boron isot ope variations in nature: A synthesis.
Geol Rundsch,1993,82(4):640-651
|
CSCD被引
25
次
|
|
|
|
5.
Bassett R L. A critical evaluation of the available measurements for the stable isotopes of boron.
Appl Geochem,1990,5(5/6):541-554
|
CSCD被引
7
次
|
|
|
|
6.
Marschall H R. Tourmaline Isotopes: No Element Left Behind.
Elements,2011,7(5):313-319
|
CSCD被引
23
次
|
|
|
|
7.
Palmer M R. Boron isotope geochemistry: An overview.
Rev Mineral,1996,33(1):709-744
|
CSCD被引
12
次
|
|
|
|
8.
Jiang S Y. Boron isotope systematics of tourmaline from granites and pegmatites: A synthesis.
Eur J Mineral,1998,10(6):1253-1265
|
CSCD被引
12
次
|
|
|
|
9.
蒋少涌. 硼同位素及其地质应用研究.
高校地质学报,2000,6(1):1-16
|
CSCD被引
37
次
|
|
|
|
10.
肖应凯. 硼同位素测定的进展及存在的问题.
质谱学报,1998,19(4):65-74
|
CSCD被引
7
次
|
|
|
|
11.
Fietzke J. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material.
J Anal Atom Spectrom,2010,25(12):1953-1957
|
CSCD被引
6
次
|
|
|
|
12.
吕苑苑. 硼同位素分析方法研究进展.
地质科学,2009,44(3):1052-1061
|
CSCD被引
8
次
|
|
|
|
13.
Aggarwal J K. Boron isotope analysis: A review.
Analyst,1995,120(5):1301-1307
|
CSCD被引
19
次
|
|
|
|
14.
Sylvester P J. Trends in analytical developments and earth science applications in LA-ICP-MS and LA-MC-ICP-MS for 2004 and 2005.
Geostandard Geoanal Res,2006,30(3):197-207
|
CSCD被引
5
次
|
|
|
|
15.
Musashi M. Extraction of boron from GSJ rock reference samples and determination of their boron isotopic ratios.
Anal Chim Acta,1990,231(1):147-150
|
CSCD被引
8
次
|
|
|
|
16.
Spivack A J. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation.
Anal Chem,1986,58(1):31-35
|
CSCD被引
30
次
|
|
|
|
17.
Aggarwal J K. The effect of instrumental mass bias on δ~(11)B measurements: A comparison between thermal ionisation mass spectrometry and multiple-collector ICP-MS.
Int J Mass Spectrom,2004,232(3):259-263
|
CSCD被引
3
次
|
|
|
|
18.
Deyhle A. Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs_2BO_2~ + ions.
Int J Mass Spectrom,2001,206(1/2):79-89
|
CSCD被引
8
次
|
|
|
|
19.
Barth S. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry.
Chem Geol,1997,143(3/4):255-261
|
CSCD被引
7
次
|
|
|
|
20.
Chaussidon M. Analytical procedures for the measurement of boron isotope compositions by ion microprobe in Meteorites and mantle rocks.
Geostand Newslett,1997,21(1):7-17
|
CSCD被引
8
次
|
|
|
|
|