基于天空约束暗通道先验的图像去雾
Image Dehazing Based on Sky-Constrained Dark Channel Prior
查看参考文献14篇
文摘
|
针对现有暗通道图像去雾算法存在的天空色彩失真,景物边缘光晕效应等问题,本文提出了基于暗通道理论的改进去雾算法.由于暗原色先验理论不适用于天空区域,本文将引导滤波用于天空区域的细化分割,准确估计包含天空区域图像的大气光照强度,解决了天空色彩失真问题;其次,利用中值滤波得到详细边缘信息,进而得到更为清晰的透射率,有效抑制了景物边缘光晕问题;最后针对去雾后图像偏暗的问题,在HSV空间对亮度分量V通道进行增强处理.实验结果表明,针对带雾图像,本文算法能够有效地去雾,改善天空区域色彩失真以及景物边缘光晕问题. |
其他语种文摘
|
An improved image dehazing algorithm based on dark channel prior is proposed to overcome the color distortion of sky and halo effects.The guided filter is utilized to segment the sky area finely to avoid the sky color distortion,since the defect of the classical dark channel prior theory.The global atmospheric light of image in sky region is estimated accurately.In addition,the detailed edge information can be got by taking advantage of median filter technique.So more effective transmission map estimation will be achieved which effectively inhibited the halo.Last,because the brightness of image after haze removal is lower than the actual scene,histogram equalization is used for channel V of the HSV color space.The experiment results show that.the proposed method can not only restore the clean scene from hazy images effectively,but also avoid color distortion of the sky region and halo artifacts. |
来源
|
电子学报
,2017,45(2):346-352 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2017.02.012
|
关键词
|
图像去雾
;
暗通道
;
天空分割
;
引导滤波
|
地址
|
1.
武汉大学电子信息学院, 湖北, 武汉, 430072
2.
华中师范大学物理科学与技术学院, 湖北, 武汉, 430079
3.
西北大学信息科学与技术学院, 陕西, 西安, 710127
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
湖北省自然科学基金
|
文献收藏号
|
CSCD:5939367
|
参考文献 共
14
共1页
|
1.
吴迪. 图像去雾的最新研究进展.
自动化学报,2015,41(2):221-239
|
CSCD被引
93
次
|
|
|
|
2.
吴成茂. 直方图均衡化的数学模型研究.
电子学报,2013,41(3):598-602
|
CSCD被引
34
次
|
|
|
|
3.
汪荣贵. 基于暗原色先验模型的Retinex算法.
电子学报,2013,41(6):1188-1192
|
CSCD被引
11
次
|
|
|
|
4.
Tan R T. Visibility in bad weather from a single image.
IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8
|
CSCD被引
41
次
|
|
|
|
5.
Kim J H. Optimized contrast enhancement for real-time image and video dehazing.
Journal of Visual Communication and Image Represention,2013,24(3):410-425
|
CSCD被引
87
次
|
|
|
|
6.
Fattal R. Single image dehazing.
ACM Transactions on Graphics (TOG),2008,27(3):Article No.72
|
CSCD被引
358
次
|
|
|
|
7.
Tarel J. Vision enhancement in homogeneous and heterogeneous fog.
IEEE Intelligent Transportation Systems Magazine,2012,4(2):6-20
|
CSCD被引
20
次
|
|
|
|
8.
He K. Single image haze removal using dark channel prior.
IEEE Transaction on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353
|
CSCD被引
219
次
|
|
|
|
9.
Zhang Y. Visibility enhancement using an image filtering approach.
EURASIP Journal on Advances in Signal Processing,2012,2012(220):1-6
|
CSCD被引
1
次
|
|
|
|
10.
Huang S C. Visibility restoration of single hazy images captured in real-world weather conditions.
IEEE Transactions on Circuits and Systems for Video Technology,2014,24(10):1814-1824
|
CSCD被引
12
次
|
|
|
|
11.
He K. Guided image filtering.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409
|
CSCD被引
211
次
|
|
|
|
12.
Xiao J. Fast image enhancement based on color space fusion.
Color Research Application,2016,41(1):22-31
|
CSCD被引
2
次
|
|
|
|
13.
Zhou Z. A parallel nonlinear adaptive enhancement algorithm for low- or high-intensity color images.
EURASIP Journal on Advances in Signal Processing,2014,2014(70):1-14
|
CSCD被引
1
次
|
|
|
|
14.
涂超平. 基于各向异性热扩散方程的多聚焦图像融合算法.
电子学报,2015,43(6):1192-1199
|
CSCD被引
6
次
|
|
|
|
|