Analysis of controls upon channel planform at the First Great Bend of the Upper Yellow River, Qinghai-Tibet Plateau
查看参考文献42篇
文摘
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess and interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anastomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d_(50)=3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d_(50)=0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.
来源
Journal of Geographical Sciences
,2013,23(5):833-848 【核心库】
DOI
10.1007/s11442-013-1047-1
关键词
Yellow River Source
;
river pattern diversity
;
river pattern transition
;
anastomosing river
;
anabranching river
;
meandering river
;
braided river
地址
1.
Tsinghua University, State Key Laboratory of Hydroscience and Engineering, Beijing, 100084
2.
Changjiang River Scientific Research Institute, Wuhan, 430010
3.
School of Environment, University of Auckland, State Key Laboratory of Hydroscience and Engineering, Beijing, 92019
4.
School of Environment, University of Auckland, New Zealand, Auckland, 92019
5.
Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Water Cycle and Related Land Surface Processes, CAS, Beijing, 100101
语种
英文
文献类型
研究性论文
ISSN
1009-637X
学科
地球物理学
基金
International Science & Technology Cooperation Program of China
;
清华大学基金
;
国家自然科学基金
文献收藏号
CSCD:5021274
参考文献 共
42
共3页
1.
Alabyan A. Types of river channel patterns and their natural controls.
Earth Surface Processes and Landforms,1998,23:467-474
CSCD被引
2
次
2.
Blue B. Geodiversity in the Yellow River source zone.
Journal of Geographical Sciences,2013,23(5):775-792
CSCD被引
10
次
3.
Brierley G J.
Geomorphology and River Management: Applications of the River Styles Framework,2005
CSCD被引
5
次
4.
Craddock W H. Rapid fluvial incision along the Yellow River during headward basin integration.
Nature Geosciences,2010,3:209-213
CSCD被引
59
次
5.
Dade W B. Grain size, sediment transport and alluvial channel pattern.
Geomorphology,2001,35:119-126
CSCD被引
7
次
6.
Desloges J R. Channel and floodplain facies in a wandering gravel-bed river.
Recent Developments in Fluvial Sedimentology,1987:99-109
CSCD被引
1
次
7.
Eaton B C. Rational regime model of alluvial channel morphology and response.
Earth Surface Processes and Landforms,2004,29:511-529
CSCD被引
2
次
8.
Eaton B C. Predicting downstream hydraulic geometry: A test of rational regime theory.
Journal of Geophysical Research,2007,112:F03025
CSCD被引
2
次
9.
Eaton B C. Channel patterns: Braided, anabranching, and single-thread.
Geomorphology,2010,120:353-364
CSCD被引
23
次
10.
Fryirs K A. Antecedent controls on river character and behaviour in partly-confined valley settings: Upper Hunter catchment, NSW, Australia.
Geomorphology,2010,117:106-120
CSCD被引
3
次
11.
Guo W Q. Vegetation cover changes and their relationship to climate variation in the source region of the Yellow River, China, 1990-2000.
International Journal of Remote Sensing,2008,29(7):2085-2103
CSCD被引
7
次
12.
Harkins N. Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China.
Journal of Geophysical Research,2007,112:F03S04
CSCD被引
40
次
13.
Huang H Q. Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern.
Water Resources Research,2004,40:W04502
CSCD被引
10
次
14.
Huang H Q. Why some alluvial rivers develop anabranching pattern.
Water Resources Research,2007,43:W07441
CSCD被引
11
次
15.
Jansen J D. Anabranching and maximum flow efficiency in Magela Creek, northern Australia.
Water Resources Research,2004,40:W04503
CSCD被引
2
次
16.
Kleinhans M G. Sorting out river channel patterns.
Progress in Physical Geography,2004,34(3):287-326
CSCD被引
6
次
17.
Knighton A D. Anastomosis and the continuum of channel pattern.
Earth Surface Processes and Landforms,1993,18:613-625
CSCD被引
13
次
18.
Latrubesse E. Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers.
Geomorphology,2008,101:130-145
CSCD被引
11
次
19.
Leopold L B. River channel patterns-braided, meandering and straight.
United States Geological Survey Professional Paper. A,1957,282:39-85
CSCD被引
2
次
20.
Li J. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic.
Science in China (Series D),1996,39(4):380-390
CSCD被引
3
次