S元素对镍基高温合金及其涂层组织和性能的影响研究进展
Research progress of effect of S element on microstructure and properties of Ni based superalloy and coating
查看参考文献85篇
文摘
|
高温结构材料是航空发动机的关键材料,镍基高温合金广泛应用于先进航空发动机叶片、涡轮盘和燃烧室等热端部件之中。镍基高温合金在母合金熔炼、真空浇注等工序中会不可避免地引入杂质元素,随着对高温合金零部件性能要求的不断提升,合金中杂质元素对合金性能的影响越来越受到关注。S元素作为一类杂质元素,其含量尽管较低,但是依然会对材料的性能造成不利影响。本文从S元素对镍基高温合金及其涂层组织和性能的影响两方面出发,综合实验研究与第一性原理计算,详细阐述S元素对高温合金显微组织的影响,以及在高温合金基体及氧化层、涂层等界面的偏聚情况,总结了S元素对高温合金力学性能、抗氧化和热腐蚀性能及涂层性能的影响。 |
其他语种文摘
|
High-temperature structural materials are the key materials of aeroengine. Nickel-based superalloys are widely used in the blades, turbine discs, combustion chambers and other hot parts of advanced jet engines. However, the impurities are inevitably introduced into nickel-based superalloys during the process of physical metallurgy, vacuum casting and so on. With the continuous improvement of the performance requirement of superalloy parts, the impacts of impurities on the properties of superalloys have been paid more and more attention. As one kind of terrible impurities, sulfur still has a tremendous negative impacts on the properties of materials although its concentration is extremely low. Through integrating the experimental and the first-principles studies, this work comprehensively reveals the effect of sulfur on the structural evolution of nickel-based superalloys and its segregation behavior at the interface of superalloy substrate, oxides layer and coating. Moreover, the contributions of sulfur to the mechanical properties, oxidation resistance, hot corrosion properties and the coating performance are summarized and discussed thoroughly. |
来源
|
航空材料学报
,2021,41(3):96-110 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000053
|
关键词
|
镍基高温合金
;
涂层
;
组织
;
性能
;
S元素
|
地址
|
1.
中国航发北京航空材料研究院, 先进高温结构材料国防科技重点实验室, 北京, 100095
2.
西北工业大学, 凝固技术国家重点实验室, 西安, 710072
3.
北京科技大学材料科学与工程学院, 北京, 100083
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
冶金工业 |
基金
|
国家自然科学基金
;
国家重大科技专项
|
文献收藏号
|
CSCD:6988495
|
参考文献 共
85
共5页
|
1.
Harris K. Improved single crystal superalloys, CMSX-4(SLS) [La+Y] and CMSX-486.
Proceedings of the Thirteenth Intenational Symposium of Superalloys,2004:45-52
|
CSCD被引
1
次
|
|
|
|
2.
Harris K.
Low sulfur nickel-base single crystal superalloy with ppm additions of lanthanum and yttrium: US20120034127 A1,2012
|
CSCD被引
1
次
|
|
|
|
3.
Decrescente M A.
Oxidation resistant superalloys containing low sulfur levels:US4895201,1990
|
CSCD被引
1
次
|
|
|
|
4.
Schlatter R.
Desulfurization of vacuum-induction-furnace-melted alloys: US 3853540 A,1974
|
CSCD被引
1
次
|
|
|
|
5.
Osozawa K.
Nibased alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability: US4626408 A,1986
|
CSCD被引
1
次
|
|
|
|
6.
Mcvay R V. Oxidation of low sulfur single crystal nickel-base superalloys.
Proceedings of the Seventh Intenational Symposium of Superalloys,1992:807-816
|
CSCD被引
1
次
|
|
|
|
7.
Sarioglu C. The control of sulfur content in nickel-base, single crystal superalloys and its effect on cyclic oxidation resistance.
Proceedings of the Eighth Intenational Symposium of Superalloys,1996:71-80
|
CSCD被引
1
次
|
|
|
|
8.
Simpson T M. Oxidation improvements of low sulfur processed superalloys.
Proceedings of the Ninth Intenational Symposium of Superalloys,2000:387-392
|
CSCD被引
1
次
|
|
|
|
9.
Haynes J A. Characterization of commercial EB-PVD TBC systems with CVD(Ni, Pt) Al bond coatings.
Surface & Coatings Technology,2001,146/147:140-146
|
CSCD被引
8
次
|
|
|
|
10.
Lee W Y. Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition.
Metallurgical & Materials Transactions A,1998,29:833-841
|
CSCD被引
6
次
|
|
|
|
11.
Walsh J M. Characterization of nickel-base superalloy fracture surfaces by Auger Electron Spectroscopy.
Proceedings of the First Intenational Symposium of Superalloys,1976:127-136
|
CSCD被引
1
次
|
|
|
|
12.
Xie X. The role of phosphorus and sulfur in Inconel 718.
Proceedings of the Eighth Intenational Symposium of Superalloys,1996:599-606
|
CSCD被引
1
次
|
|
|
|
13.
Kandaskalov D. First-principles study of sulfur multi-absorption in nickel and its segregation to the Ni(100) and Ni(111) surfaces.
Surface Science,2013,617(11):15-21
|
CSCD被引
1
次
|
|
|
|
14.
Dong N. Stress effects on stability and diffusion behavior of sulfur impurity in nickel:a first-principles study.
Computational Materials Science,2014,90:137-142
|
CSCD被引
2
次
|
|
|
|
15.
Peng L. Site preference of Sdoping and its influence on the properties of a Ni/Ni_3Al interface.
Modelling & Simulation in Materials Science & Engineering,2011,19(6):065002
|
CSCD被引
3
次
|
|
|
|
16.
Han Y B. Grain boundary segregation and mechanical properties of an aged Ni-20Cr-18W-1Mo superalloy at different temperatures.
Rare Metal Materials & Engineering,2016,45(12):3043-3049
|
CSCD被引
1
次
|
|
|
|
17.
Yamaguchi M. Grain boundary decohesion by sulfur segregation in ferromagnetic iron and nickel a first-principles study.
Materials Transactions,2006,47(11):2682-2689
|
CSCD被引
2
次
|
|
|
|
18.
Evecen M. Adsorption of S, O, and H on the NiAl(110)-(2 × 2) surface.
Physica B,2010,405:4059-4063
|
CSCD被引
1
次
|
|
|
|
19.
Chen K. Sulfur embrittlement on γ/γ ' interface of Ni-base single crystal superalloys.
Acta Materialia,2003,51(4):1079-1086
|
CSCD被引
9
次
|
|
|
|
20.
Yong J. Gettering of S in Ni from first principles.
Scripta Materialia,2010,62(10):782-785
|
CSCD被引
5
次
|
|
|
|
|