热化学非平衡流动中黏性干扰和化学反应对HB2气动力的影响
Effect of viscosity and chemical reactions on aerodynamic force in chemical nonequilibrium flow
查看参考文献20篇
文摘
|
已知研究认为, 相比冻结流动下的压力值, 热化学非平衡条件下HB2模型扩张裙体部分压力的偏大是由黏性干扰引起的.研究探讨了黏性干扰和高温气体效应对HB2扩张裙体部分压力的影响规律.数值求解了有限速率的N-S方程, 化学反应模型考虑了5种组分、17个基元反应, 并采用Park T-Tv双温度模型求解.对比扩张裙体部分压力对黏性干扰和化学反应的敏感性发现, 热化学反应流动中扩张裙体部分压力的偏大并非由黏性的改变引起, 而是由化学反应所主导.对比流动各参量对压力的贡献值发现, 压力上升速率增加主要来源于温度项的贡献. |
其他语种文摘
|
The present work deals with the sensitivity of aerodynamic force to variations in viscous coefficients and chemical reaction rates in thermochemical nonequilibrium flow over HB2 model. Within this scope, numerical simulations are conducted by varying the viscous coefficients and chemical reaction rates over their uncertainty range. The numerical method uses Park's two-temperature model for the description of thermochemical nonequilibrium processes and solves the full N-S equations for a multicomponent reacting gas mixture. The effect of variations in viscous coefficients and chemical reaction rates on pressure coefficient on the flare skirt part shows a big difference. The thicker boundary layer is not the reason for pressure becoming higher on the flare part. It is found that the main contribution to the pressure increase in the nonequilibrium case is the change of temperature due to chemical nonequilibrium, but not the increase of viscous coefficient. |
来源
|
中国科学. 物理学
, 力学, 天文学,2015,45(4):044702-1-044702-11 【核心库】
|
DOI
|
10.1360/sspma2014-00333
|
关键词
|
高焓热化学非平衡
;
黏性干扰
;
HB2模型
;
压力系数
;
化学反应边界层
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
文献收藏号
|
CSCD:5369748
|
参考文献 共
20
共1页
|
1.
Li K. The applicability of Mach number independence principle in case of hypersonic thermo-chemical nonequilibrium.
Proceedings of the First International Conference on High Temperature Gas Dynamics,2012
|
CSCD被引
1
次
|
|
|
|
2.
Muylaert J.
Extrapolation from wind tunnel to flight:Shuttle orbiter aerodynamics. Technical Report,1998
|
CSCD被引
1
次
|
|
|
|
3.
Gray J D.
Force tests of standard hypervelocity ballistic models HB-1 and HB-2 at Mach 1.5 to 10. Technical report AEDC-TDR-63-137,1963
|
CSCD被引
1
次
|
|
|
|
4.
Gary J D.
Summary report on aerodynamic characteristics of standard models HB-1 and HB-2. Technical report AEDC-TDR-64-137,1964
|
CSCD被引
1
次
|
|
|
|
5.
Pennelegion L.
Free-flight tests in the Npl 6-in.(15-cm) shock tunnel of model HB-2 using multiple spark recording. Technical report, NPL Aero Report 1212, ARC/CP-934,1966
|
CSCD被引
1
次
|
|
|
|
6.
Kuchi-ishi S.
Comparative force/heat flux measurements between JAXA hypersonic test facilities using standard model HB-2 (Part 1:1.27 m hypersonic wind tunnel results). Technical Report,2005
|
CSCD被引
1
次
|
|
|
|
7.
Kuchi-ishi S.
Comparative force/heat flux measurements between JAXA hypersonic test facilities using standard model HB-2 (Part 2:high enthalpy shock tunnel results). Technical Report,2006
|
CSCD被引
1
次
|
|
|
|
8.
Kodera M.
Comparison of re-entry flow computations with high enthalpy shock tunnel experiments. AIAA Paper, AIAA-2009-7305,2009
|
CSCD被引
1
次
|
|
|
|
9.
李康. 高超声速流动上仰异常现象关键因素数值研究.
中国科学:物理学力学天文学,2015,45:034701
|
CSCD被引
1
次
|
|
|
|
10.
Gnoffo P A.
Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. Technical Report, NASA, 89,1989:16115
|
CSCD被引
1
次
|
|
|
|
11.
Blottner F C.
Chemically reacting viscous flow program for multicomponent gas mixtures. Technical Report,1971
|
CSCD被引
1
次
|
|
|
|
12.
Candler G V. The computation of hypersonic ionized flows in chemical and thermal nonequilibrium.
Aerospace Sciences Meeting, 26th,1988
|
CSCD被引
1
次
|
|
|
|
13.
White F A.
Viscous Fluid Flow,1974:28-36
|
CSCD被引
1
次
|
|
|
|
14.
Hirschel E H.
Basics of Aerothermodynamcis,2005
|
CSCD被引
1
次
|
|
|
|
15.
Millikan R C. Systematics of vibrational relaxation.
J Chem Phys,1963,39:3209-3213
|
CSCD被引
21
次
|
|
|
|
16.
Furumoto G H. Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction.
Phys Fluids,1997,9:191-210
|
CSCD被引
3
次
|
|
|
|
17.
Yoon S. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations.
AIAA J,1988,26:1025-1026
|
CSCD被引
156
次
|
|
|
|
18.
Kim K H. Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme.
J Comput Phys,2001,174:38-80
|
CSCD被引
78
次
|
|
|
|
19.
Kitamura K. Evaluation of Euler flux for hypersonic heating computations.
AIAA J,2010,48:763-776
|
CSCD被引
12
次
|
|
|
|
20.
Reddy S. Effect of chemical reaction rates on aeroheating predictions of reentry flows.
J Thermophys Heat Tr,2011,25:21-33
|
CSCD被引
6
次
|
|
|
|
|