镁合金表面不同MOF超疏水涂层的耐蚀行为
Corrosion resistance behavior of different MOF superhydrophobic coatings on magnesium alloy surface
查看参考文献25篇
文摘
|
对AZ91D镁合金表面三种不同超疏水涂层(MZS-1,MZS-2和ZnO@ZIF-8)在5%(质量分数)NaCl溶液中的耐蚀性能进行研究。采用场发射扫描电子显微镜、静态接触角测试仪、电化学工作站和盐水喷雾试验机分别对超疏水复合涂层进行微观形貌、润湿性、耐蚀性能等进行测试与表征。结果表明:经过盐雾处理后,三种超疏水涂层均在192 h后出现腐蚀,其中MZS-1超疏水涂层的腐蚀最为严重,MZS-2超疏水涂层240 h后表面出现点蚀,同时经过盐雾处理后仍能维持较高的接触角,故MZS-2复合涂层耐蚀性能最好。极化曲线测试发现,在盐雾处理240 h后,三种超疏水涂层的腐蚀电流密度仍比金属基体降低1个数量级,表现出优异的耐蚀性能。所制备的超疏水涂层可以有效增加金属材料的耐蚀性,由于超疏水涂层的拒水性,有效阻挡腐蚀离子的渗透,给基体提供长期的防护作用。 |
其他语种文摘
|
In order to study the corrosion resistance of three different superhydrophobic coatings(MZS-1, MZS-2 and ZnO@ZIF-8)on AZ91D magnesium alloy surface in 5%(mass fraction)NaCl solution. The microstructure, wettability and corrosion resistance of the superhydrophobic composite coating were tested and characterized by field emission scanning electron microscope, static contact angle tester, electrochemical workstation and salt spray tester, respectively. The results show that the corrosion of the superhydrophobic coatings does not occur until 192 h after salt spray treatment among the three types of superhydrophobic coatings, and the corrosion of the MZS-1 superhydrophobic coating is the most serious. The surface pitting of the MZS-2 superhydrophobic coating doesn't occur until 240 h later, and the contact angle is still high after salt spray treatment, so the corrosion resistance of the MZS-2 composite coating is the best. The polarization curve tests indicate that the corrosion current density of three superhydrophobic coatings are still one order of magnitude lower than that of the metal matrix after salt spray treatment for 240 h, showing excellent corrosion resistance. The superhydrophobic coating can effectively increase the corrosion resistance of metal materials. It can effectively prevent the infiltration of corrosive ions and provide longterm protection for the matrix because of its water repellency. |
来源
|
材料工程
,2024,52(4):138-145 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000602
|
关键词
|
镁合金
;
MOF
;
超疏水涂层
;
疏水稳定性
;
耐蚀行为
|
地址
|
桂林理工大学化学与生物工程学院, 广西电磁化学功能物质重点实验室, 广西, 桂林, 541004
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
广西自然科学基金
|
文献收藏号
|
CSCD:7702987
|
参考文献 共
25
共2页
|
1.
宋政伟. 镁合金表面Ni-P/Cu-Zn超疏水复合涂层制备及耐蚀性研究.
电镀与精饰,2021,43(7):10-14
|
CSCD被引
3
次
|
|
|
|
2.
Zaffora A. Tuning of the Mg alloy AZ31 anodizing process for biodegradable implants.
ACS Applied Materials & Interfaces,2021,13(11):12866-12876
|
CSCD被引
6
次
|
|
|
|
3.
Jiang D. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly.
Surface and Coatings Technology,2018,339:155-166
|
CSCD被引
32
次
|
|
|
|
4.
杨栋. AZ31镁合金耐腐蚀性的研究.
新技术新工艺,2021(11):4-8
|
CSCD被引
1
次
|
|
|
|
5.
Azimi G. Hydrophobicity of rare-earth oxide ceramics.
Nature Materials,2013,12(4):315-320
|
CSCD被引
32
次
|
|
|
|
6.
Cui L Y. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions.
Journal of Materials Science & Technology,2017,33(9):971-986
|
CSCD被引
15
次
|
|
|
|
7.
Maharana H S. Structure dependent super-hydrophobic and corrosion resistant behavior of electrodeposited Ni-MoSe_2-MWCNT coating.
Applied Surface Science,2019,478(1):26-37
|
CSCD被引
3
次
|
|
|
|
8.
Li S Y. Fabrication of pinecone-like structure superhydrophobic surface on titanium substrate and its selfcleaning property.
Chemical Engineering Journal,2016,290:82-90
|
CSCD被引
3
次
|
|
|
|
9.
Cui L. Corrosion resistance of layer-bylayer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys.
RSC Advances,2016,6(68):63107-63116
|
CSCD被引
18
次
|
|
|
|
10.
蒋世权. 镁合金表面微弧氧化/自组装复合膜的耐蚀性能.
表面技术,2021,50(4):294-303
|
CSCD被引
3
次
|
|
|
|
11.
Yang W. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water.
Corrosion Science,2021,188(10):109562
|
CSCD被引
7
次
|
|
|
|
12.
Bai L J. Effect of in-situ micro-arc oxidation coating on the galvanic corrosion of AZ31 Mg coupled to aluminum alloys.
J Alloys Compd,2019,775:1077-1085
|
CSCD被引
7
次
|
|
|
|
13.
Jiang D. Enhanced corrosion barrier of microarc-oxidized Mg alloy by self-healing superhydrophobic silica coating.
Industrial & Engineering Chemistry Research,2018,58(1):165-178
|
CSCD被引
17
次
|
|
|
|
14.
Cui Z. Atmospheric corrosion of fieldexposed AZ31 magnesium in a tropical marine environment.
Corrosion Science,2013,76:243-256
|
CSCD被引
33
次
|
|
|
|
15.
万闪. 铝合金超疏水转化膜的制备与性能.
材料工程,2018,46(9):144-151
|
CSCD被引
5
次
|
|
|
|
16.
Kuang J. The study on corrosion resistance of superhydrophobic coatings on magnesium.
Applied Surface Science,2020,501(31):1441371
|
CSCD被引
1
次
|
|
|
|
17.
Wang S. Fabrication of robust tungsten carbide particles reinforced Co-Ni super-hydrophobic composite coating by electrochemical deposition.
Surface and Coatings Technology,2020,385:125390
|
CSCD被引
6
次
|
|
|
|
18.
Zang D M. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod.
Advanced Functional Materials,2017,27(8):1605446
|
CSCD被引
37
次
|
|
|
|
19.
Gao J. Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation.
Chemical Engineering Journal,2017,326:443-453
|
CSCD被引
10
次
|
|
|
|
20.
Wei J. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating.
Chemical Engineering Journal,2020,390:124562
|
CSCD被引
21
次
|
|
|
|
|