帮助 关于我们

返回检索结果

酸性矿山废水微生物组时空演变特征及微生物-矿物互作机制
Spatio-temporal Evolution Characteristics of Microbiome in Acid Mine Drainage and Microbial-mineral Interaction Mechanism

查看参考文献192篇

冯乙晴 1,2   郝立凯 1,3,2 *   郭圆 1   徐绯 4   徐恒 4  
文摘 酸性矿山废水(Acid Mine Drainage,AMD)是世界范围内最严重的环境问题之一。微生物是AMD形成过程的主要驱动者,主导了该系统中Fe-S地球化学循环,并与矿物之间存在复杂的相互作用关系。对其群落结构、功能和代谢特征的深入分析有助于揭示极端酸性环境中优势物种和稀有物种的生态意义,有利于制定科学合理的AMD污染防控和修复措施。采用微生物组学(基因组、转录组、蛋白组、代谢组和表型组)方法进行系统研究有助于明确极端环境胁迫下微生物适应性反应的分子机制。AMD微生物组在尾矿酸化过程、生物膜发育过程、生物处理过程和水热驱动的季节演替等不同时间序列及局部和精细空间尺度上具有明显的系统聚类趋势,体现了其适应极端酸性和有毒金属环境的生态策略。AMD系统Fe-S生物地球化学梯度对微生物群落结构和功能具有显著的影响,铁硫代谢相关微生物对环境梯度变化的响应又驱动了Fe-S生物地球化学循环,主导了AMD矿物的演变过程、相变平衡及金属元素的形态转化。酸性矿山废水微生物成矿作用是生物和非生物反应相互作用的共同结果,表面反应控制是矿物微生物氧化反应机理的关键,接触机制是其主导机制。此外,AMD矿物的微生物还原遵循电化学过程,含铁矿物是AMD系统微生物胞外呼吸最重要的电子受体之一,铁呼吸过程驱动了AMD系统的元素生物地球化学循环,进而驱动其微生物群落和功能、代谢等的演化。
其他语种文摘 Acid mine drainage (AMD) is one of the most serious environmental problems in the world. Microorganism are responsible for the formation of AMD via Fe-S geochemical cycle, in which has complex interaction with minerals. In-depth analysis of the microbial community structure, function and metabolic characteristics will be helpful to reveal the ecological significance of dominant and rare species in extreme acidic environments, contributing to the remediation of AMD contamination. Systematic studies using multi-omics methods, including genome, transcriptome, proteome, metabolism and phenome, are helpful to clarify the molecular mechanism of microbe-environment interactions. Microbiome in AMD were clustered in different time series such as tailings acidification process, biofilm development process, biological treatment process and seasonal succession driven by water and heat, and regional and fine spatial scales, reflecting their ecological strategies adapting to extreme acidic and toxic metal environments. The Fe-S biogeochemical gradient in AMD system has a significant impact on the structure and function of microbial communities. The response of Fe- and S-metabolizing microbial populations to environmental gradient changes drives the Fe-S biogeochemical cycle and leads to the evolution process, phase transformation equilibrium of AMD minerals, and the transformation of metal elements. The microbial mineralization in AMD is the result of the interaction between biotic and abiotic reactions. The control of surface reaction plays a key role for mineral microbial oxidation, which is driven by the contact mechanism. In addition, the microbial reduction of minerals in AMD follows the electrochemical process. The iron-bearing mineral is one of the most important electron acceptors of extracellular respiration of microorganisms in AMD system, so that the iron respiration drives the biogeochemical cycle of elements, and further drives the evolution of microbial community, function and metabolism in AMD system.
来源 生态环境学报 ,2022,31(5):1032-1046 【核心库】
DOI 10.16258/j.cnki.1674-5906.2022.05.019
关键词 酸性矿山废水(AMD) ; 微生物组 ; 微生物成矿 ; 微生物-矿物作用(MMI) ; Fe-S ; 生物地球化学循环
地址

1. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081  

2. 中国科学院大学, 北京, 100049  

3. 中国科学院第四纪科学与全球变化卓越创新中心, 中国科学院第四纪科学与全球变化卓越创新中心, 陕西, 西安, 710061  

4. 四川大学, 四川, 成都, 610065

语种 中文
文献类型 综述型
ISSN 1674-5906
学科 环境科学基础理论
基金 国家重点研发计划项目 ;  国家自然科学基金 ;  中国科学院B类战略性先导科技专项资助 ;  中国科学院启动经费 ;  中国科学院贵阳地球化学研究所环境地球化学国家重点实验室基金
文献收藏号 CSCD:7248913

参考文献 共 192 共10页

1.  Abinandan S. Acid-adapted microalgae exhibit phenotypic changes for their survival in acid mine drainage samples. FEMS Microbiology Ecology,2020,96(11):1-12 CSCD被引 1    
2.  Abinandan S S R. Sustainable production of biomass and biodiesel by acclimation of non-acidophilic microalgae to acidic conditions. Bioresource Technology,2019,271:316-324 CSCD被引 3    
3.  Akcil A. Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production,2006,14(12):1139-1145 CSCD被引 93    
4.  Akinpelu E A. Performance of microbial community dominated by Bacillus spp. in acid mine drainage remediation systems: A focus on the high removal efficiency of SO_4 ~(2-), Al~(3+), Cd~(2+), Cu~(2+), Mn~(2+), Pb~(2+) and Sr~(2+). Heliyon,2021,7(6):e07241 CSCD被引 2    
5.  Allen. Community genomics in microbial ecology and evolution. Nature Reviews Microbiology,2005,3(6):489-498 CSCD被引 1    
6.  Anantharaman K. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications,2016,7(1):13219 CSCD被引 19    
7.  Angelique D. Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage. Microbial Ecology,2016,71(3):672-685 CSCD被引 2    
8.  Ayora C. Recovery of rare earth elements and yttrium from passive remediation systems of acid mine drainage. Environmental Science & Technology,2016,50(15):8255-8262 CSCD被引 6    
9.  Baker B J. Microbial communities in acid mine drainage. FEMS Microbiology Ecology,2003,44(2):139-152 CSCD被引 55    
10.  Baker B. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Applied and Environmental Microbiology,2009,75(7):2192-2199 CSCD被引 7    
11.  Baleeiro A. Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Applied Geochemistry,2018,89:129-137 CSCD被引 3    
12.  Banfield J F. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science (New York),2000,289:751-754 CSCD被引 77    
13.  Bao Y P. Role of microbial activity in Fe() hydroxysulfateⅢmineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Science of The Total Environment,2018,616/617:647-657 CSCD被引 13    
14.  Bartsch K. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Human molecular genetics,2017,26(20):3960-3972 CSCD被引 6    
15.  Baumgartner J. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr) oxide intermediates. Proceedings of the National Academy of Sciences,2013,110(37):14883 CSCD被引 5    
16.  Belnap C. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions. The ISME Journal,2011,5(7):1152-1161 CSCD被引 2    
17.  Belnap C. Cultivation and quantitative proteomic analyses of acidophilic microbial communities. The ISME Journal,2010,4(4):520-530 CSCD被引 1    
18.  Benzerara K. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience,2011,343(2):160-167 CSCD被引 11    
19.  Burgos W D. Schwertmannite and Fe oxides formed by biological low-pH Fe(Ⅱ) oxidation versus abiotic neutralization: Impact on trace metal sequestration. Geochimica et Cosmochimica Acta,2012,76:29-44 CSCD被引 3    
20.  Burton E D. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands. Geochimica et Cosmochimica Acta,2007,71(18):4456-4473 CSCD被引 10    
引证文献 2

1 张翠静 固氮氧化亚铁钩端螺旋菌产次生矿物的条件优化及矿物鉴定 微生物学通报,2024,51(10):3954-3969
CSCD被引 0 次

2 熊轩 土壤矿物介导下2种母质发育水稻土中多物种生物膜的形成 微生物学报,2025,65(1):106-121
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号