基于街景图像的城市环境评价研究综述
A Review of Urban Environmental Assessment based on Street View Images
查看参考文献70篇
文摘
|
城市环境评价研究传统上采用基于现场调研的方法,难以在大范围、精细化的尺度上进行评估。街景图像具有覆盖面广、能提供街道层级景观信息,且数据采集成本低的优势,为城市环境评价研究提供了大样本数据源和新的研究思路。人工智能技术的不断突破和其在各领域的应用,使得在大范围空间尺度上,基于街景图像进行城市环境评价研究成为可能。本文首先对城市环境评价常用的3种数据源(街景图像、遥感影像和地理标记社交媒体数据)进行对比分析,归纳街景图像在城市环境评价中的优势;然后,从方法学的角度把基于街景图像进行城市环境评价过程中使用的方法分为4大类别(基于图像分析的方法、基于统计分析的方法、基于人工智能的方法和基于空间分析的方法);接着,从城市物理环境、社会环境、经济环境、美学环境,综述了街景图像在城市环境评价中的应用研究进展;最后,对现有研究成果进行了总结并对未来研究方向提出展望。 |
其他语种文摘
|
Urban environmental assessment research has traditionally adopted a method based on field survey,which is difficult to evaluate on a large scale and refined scale.Street view image has a wide coverage,can provide street-level landscape and intuitively reflect the city facade information,and have the advantage of lower cost than on-site data collection,so it provides a large sample data source and new research ideas for urban environmental assessment.Different from the sky view of remote sensing image and the user interaction data of geo-tagged social media,street view image is more focused on recording stereoscopic sectional view of the city street level from the perspective of people,which can represent scenes seen or felt from the ground on a fine scale,so it is more suitable to replace on-site observation of urban environmental assessment.The continuous breakthrough of artificial intelligence technology and its application in various fields make it possible to conduct urban environmental assessment research based on street view image on a wide range of spatial scales.In this paper,we first described and compared three categories of data sources commonly used in urban environmental assessment including street view image,remote sensing image and geo-tagged social media data,and summarized the advantages of street view image in urban environmental assessment.Then we classified the methods used in urban environment assessment based on street view image into the following four categories:methods based on image analysis,statistical analysis,artificial intelligence and spatial analysis.Next,from the urban physical,social,economic and aesthetic environment,we summarized the research and application of street view image in urban environmental assessment.Finally,we pointed out the innovations,limitations and future research directions of the urban environmental assessment based on street view image.On one hand,the application of artificial intelligence represented by deep learning promotes the research progress of urban environmental assessment on large-scale and fine-scale.On the other hand,in the era of big data,the integration of data source represented by street view image,remote sensing image,and geo-tagged social media data will help promote urban environmental assessment research from multiple perspectives and multi-level. |
来源
|
地球信息科学学报
,2019,21(1):46-58 【核心库】
|
DOI
|
10.12082/dqxxkx.2019.180311
|
关键词
|
街景图像
;
城市环境评价
;
城市要素
;
人工智能
;
深度学习
|
地址
|
1.
中国矿业大学(北京)地球科学与测绘工程学院, 北京, 100083
2.
中国石油大学(北京)信息科学与工程学院, 北京, 102249
3.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
4.
中国科学院大学, 北京, 100049
5.
北京联合大学应用文理学院, 北京, 100191
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1560-8999 |
学科
|
自动化技术、计算机技术;环境质量评价与环境监测 |
基金
|
国家自然科学基金
;
中国科学院资源与环境信息系统国家重点实验室开放研究基金
|
文献收藏号
|
CSCD:6415539
|
参考文献 共
70
共4页
|
1.
沈清基.
城市生态与城市环境,1998
|
CSCD被引
51
次
|
|
|
|
2.
海热提·涂尔逊. 试论城市环境与可持续发展.
环境科学进展,1998,6(6):48-55
|
CSCD被引
2
次
|
|
|
|
3.
郝新华. 街道绿化:一个新的可步行性评价指标.
上海城市规划,2017(1):32-36,49
|
CSCD被引
22
次
|
|
|
|
4.
Yin L. Measuring visual enclosure for street walkability:Using machine learning algorithms and Google Street View imagery.
Applied Geography,2016,76:147-153
|
CSCD被引
20
次
|
|
|
|
5.
Dubey A. Deep learning the city:Quantifying urban perception at a global scale.
European Conference on Computer Vision,2016:196-212
|
CSCD被引
4
次
|
|
|
|
6.
Hara K. Combining crowdsourcing and google street view to identify street-level accessibility problems.
Proceedings of the SIGCHI conference on human factors in computing systems,2013:631-640
|
CSCD被引
2
次
|
|
|
|
7.
Kelly C M. Using google street view to audit the built environment:Inter-rater reliability results.
Annals of Behavioral Medicine,2013,45(1):108-112
|
CSCD被引
7
次
|
|
|
|
8.
.
Google Street View (GSV)
|
CSCD被引
1
次
|
|
|
|
9.
.
Baidu Street View (BSV)
|
CSCD被引
1
次
|
|
|
|
10.
Tencent Street View (TSV).
http://lbs.qq.com/panostatic_v1/
|
CSCD被引
1
次
|
|
|
|
11.
Rundle A G. Using google street view to audit neighborhood environments.
American Journal of Preventive Medicine,2011,40(1):94-100
|
CSCD被引
16
次
|
|
|
|
12.
Hansen M C. A review of large area monitoring of land cover change using Landsat data.
Remote Sensing of Environment,2012,122(1):66-74
|
CSCD被引
39
次
|
|
|
|
13.
宋盼盼. 基于光谱时间序列拟合的中国南方水稻遥感识别方法研究.
地球信息科学学报,2017,19(1):117-124
|
CSCD被引
12
次
|
|
|
|
14.
Olaguer E P. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring.
Atmospheric Environment,2017,150:220-228
|
CSCD被引
5
次
|
|
|
|
15.
苏亚丽. 基于多源卫星遥感的暴雨灾情时空动态信息的提取.
地球信息科学学报,2018,20(7):1004-1013
|
CSCD被引
4
次
|
|
|
|
16.
侯浩然. 近20年来福州城市热环境变化遥感分析.
地球信息科学学报,2018,20(3):385-395
|
CSCD被引
12
次
|
|
|
|
17.
Wang S. Social media as a sensor of air quality and public response in China.
Journal of medical Internet research,2015,17(3):e22
|
CSCD被引
2
次
|
|
|
|
18.
梁春阳. 社交媒体数据对反映台风灾害时空分布的有效性研究.
地球信息科学学报,2018,20(6):807-816
|
CSCD被引
15
次
|
|
|
|
19.
刘逸. 基于大数据的旅游目的地情感评价方法探究.
地理研究,2017,36(6):1091-1105
|
CSCD被引
32
次
|
|
|
|
20.
易峥. 基于微博语义分析的重庆主城区风貌感知评价.
地理科学进展,2017,36(9):1058-1066
|
CSCD被引
8
次
|
|
|
|
|