金属有机框架材料在吸附分离领域的研究进展
Research progress of metal-organic framework materials in adsorption separation
查看参考文献90篇
文摘
|
纳米多孔材料由于具有显著的纳米尺度空间效应,在吸附以及膜分离领域中受到了极大的关注。作为无机多孔材料的延伸,金属有机框架材料(metal organic framework,MOF),由于其较大的比表面积、较高的孔隙率和孔结构可调的特点被广泛地应用于气相储存分离、液相的吸附分离和催化反应等各个领域。本文对MOF的种类进行了分类,并对MOF材料的合成方法和粒径调控机理进行了比较,其中,重点介绍了溶剂热合成法的优点。同时,系统地总结了MOF材料在吸附分离研究中存在的问题和局限,并对先进的基于MOF材料的复合膜制备技术进行了展望;总结了MOF在气体储存分离、液体吸附分离以及膜分离方面的应用。最后,针对复合膜的制备提出了通过改变MOF合成方式改善MOF材料与有机膜相容性的思路。 |
其他语种文摘
|
Nanoporous materials have attracted great attention in the fields of adsorption and membrane separation due to their remarkable nanoscale spatial effects.As an extension of inorganic porous materials,metal organic framework(MOF)has been widely used in gas-phase storage and separation,liquid-phase adsorption separation and catalytic reaction due to its large specific surface area,high porosity and adjustable pore structure.In this paper,the types of MOF are classified,and the synthesis methods and particle size control mechanism of MOF materials were compared.Among them,the advantages of solvothermal synthesis were emphatically introduced.At the same time,the problems and limitations of MOF materials in adsorption separation research were summarized systematically,and the advanced preparation technology of composite membrane based on MOF materials was prospected;the application of MOF in gas storage separation,liquid adsorption separation and membrane separation was summarized.Finally,for the preparation of composite membrane,the idea of improving the compatibility of MOF material and organic membrane by changing the synthesis method of MOF was proposed. |
来源
|
材料工程
,2021,49(7):10-20 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000559
|
关键词
|
金属有机框架材料
;
粒径调控
;
气相分离
;
液相分离
;
膜分离
|
地址
|
1.
华北理工大学材料科学与工程学院, 河北, 唐山, 063210
2.
天津工业大学化学与化工学院, 天津, 300387
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
国家自然科学基金项目
;
唐山市重点项目
|
文献收藏号
|
CSCD:7010943
|
参考文献 共
90
共5页
|
1.
徐洋.
功能化多孔有机聚合物的合成策略及其催化性能研究,2019
|
CSCD被引
1
次
|
|
|
|
2.
Jiang D. The application of different typological and structural MOFs-based materials for the dyes adsorption.
Coordination Chemistry Reviews,2019,380:471-483
|
CSCD被引
27
次
|
|
|
|
3.
Xiao T. The most advanced synthesis and a wide range of applications of MOF-74and its derivatives.
Microporous and Mesoporous Materials,2019,283:88-103
|
CSCD被引
5
次
|
|
|
|
4.
张贺. 金属有机骨架材料在吸附分离研究中的应用进展.
化学学报,2017,75(9):841-859
|
CSCD被引
36
次
|
|
|
|
5.
Deng H. Multiple functional groups of varying ratios in metal-organic frameworks.
Science,2010,327:846-850
|
CSCD被引
87
次
|
|
|
|
6.
Eddaoudi M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.
Science,2002,295:469-472
|
CSCD被引
407
次
|
|
|
|
7.
Rosi N L. Hydrogen storage in microporous metal-organic frameworks.
Science,2003,300(5622):1127-1129
|
CSCD被引
251
次
|
|
|
|
8.
Karagiaridi O. Opening ZIF-8:a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers.
Journal of the American Chemical Society,2012,134(45):18790-18796
|
CSCD被引
13
次
|
|
|
|
9.
Montes-Andres H. Co/Ni mixed-metal expanded IRMOF-74series and their hydrogen adsorption properties.
International Journal of Hydrogen Energy,2019,44(33):18205-18213
|
CSCD被引
2
次
|
|
|
|
10.
Cravillon J. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework.
Chemistry of Materials,2009,21(8):1410-1412
|
CSCD被引
66
次
|
|
|
|
11.
Dai M. A novel separator material consisting of ZeoliticImidazolate Framework-4 (ZIF-4)and its electrochemical performance for lithium-ions battery.
Journal of Power Sources,2017,369:27-34
|
CSCD被引
4
次
|
|
|
|
12.
Horcajada P. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging.
Nature Materials,2010,9(2):172-178
|
CSCD被引
153
次
|
|
|
|
13.
Lupu D. Hydrogen storage potential in MIL-101at 200K.
International Journal of Hydrogen Energy,2019,44(25):12715-12723
|
CSCD被引
4
次
|
|
|
|
14.
Cavka J H. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability.
Journal of the American Chemical Society,2008,130(42):13850-13851
|
CSCD被引
309
次
|
|
|
|
15.
Zhang X. The preparation of defective UiO-66metal organic framework using MOF-5as structural modifier with high sorption capacity for gaseous toluene.
Journal of Environmental Chemical Engineering,2019,7(5):103405
|
CSCD被引
6
次
|
|
|
|
16.
Zhao D L. Thin-film nanocomposite membranes incorporated with UiO-66-NH_2nanoparticles for brackish water and seawater desalination.
Journal of Membrane Science,2020,604:118039
|
CSCD被引
4
次
|
|
|
|
17.
Cui X. In-situ fabrication of cellulose foam HKUST-1and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides.
Chemical Engineering Journal,2019,369:898-907
|
CSCD被引
11
次
|
|
|
|
18.
Wang C. Cu ion induced morphology change of hematite microspheres as lithium ion battery anode material by solvothermal synthesis.
Ceramics International,2019,45(3):2940-2947
|
CSCD被引
1
次
|
|
|
|
19.
Ahnfeldt T. [Al_4(OH)_2(OCH_3)_4(H_2N-bdc)_3]_x H_2O:a 12-connected porous metal-organic framework with an unprecedented aluminumcontaining Brick.
Angewandte Chemie International Edition,2009,48(28):5163-5166
|
CSCD被引
10
次
|
|
|
|
20.
Jian Y. Facile synthesis of highly permeable CAU-1tubular membranes for separation of CO_2/N_2 mixtures.
Journal of Membrane Science,2017,522:140-150
|
CSCD被引
2
次
|
|
|
|
|