镍基高温合金GH4133B本构模型及热加工图的热模拟研究
Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test
查看参考文献12篇
文摘
|
在Gleeble-1500D热模拟试验机上对镍基高温合金GH4133B进行变形温度为940~1060 ℃,应变速率为0.001~1 s~(–1),变形量为50%的热模拟压缩实验,并对不同工艺参数下的变形试样进行微观组织观察。结合Arrhenius双曲正弦型方程并引入Zener-Hollomon参数,构建该合金热变形的本构模型,绘制热加工图。获得该合金的热变形激活能为448 kJ/mol,在温度为1020 ℃,应变速率为1 s~(–1)时,功率耗散达到峰值。基于本构模型的建立和热加工图的绘制等热模拟压缩研究结果和微观组织测试结果,确定GH4133B镍基高温合金最佳的热加工变形温度和应变速率分别为1020~1060 ℃和0.01~0.1 s~(–1)。 |
其他语种文摘
|
The deformation behavior of the GH4133B Ni-base superalloy in hot working process was investigated by the isothermal compression tests carried out at the temperature of 940-1060℃ and the strain rate of 0.001-1.0 s~(–1) with the height reduction of 50%. The microstructure of the deformed samples under different processing parameters was observed. Combined with Arrhenius hyperbolic sine equation and Zener-Hollomon parameter, the constitutive model of hot deformation of the alloy was established, and the hot working diagram was drawn. The activation energy of hot deformation of the alloy was 448 kJ/mol. the power dissipation reached its peak at 1020 ℃ and strain rate of 1 s~(–1). Based on the establishment of constitutive model and processing map, the results of isothermal compression simulation and microstructure test analysis show that the best hot working deformation temperature of GH4133B nickel base superalloy is 1020-1060 ℃ and the strain rate is 0.01-0.1 s~(–1). |
来源
|
航空材料学报
,2021,41(6):44-50 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000146
|
关键词
|
GH4133B
;
高温合金
;
热模拟压缩
;
本构模型
;
热加工图
;
组织演变
|
地址
|
1.
陕西科技大学机电工程学院, 西安, 710021
2.
西北工业大学材料学院, 西安, 710072
3.
浙江温州轻工研究院, 浙江, 温州, 325019
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
中国博士后科学基金
;
陕西省自然科学基金
;
浙江省温州市科技计划项目
|
文献收藏号
|
CSCD:7111401
|
参考文献 共
12
共1页
|
1.
罗希延. 航空发动机涡轮盘用GH4133B合金常温力学性能统计分析.
机械工程学报,2010,46(22):75-83
|
CSCD被引
6
次
|
|
|
|
2.
Luo L. Effect of directional solidification process on microstructure and stress rupture property of a hot corrosion resistant single crystal superalloy.
China Foundry,2019,16(1):8-13
|
CSCD被引
7
次
|
|
|
|
3.
Zhang H Y. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy.
Materials Characterization,2010,61:49-53
|
CSCD被引
34
次
|
|
|
|
4.
王晓辉. 不同成分GH4133B合金的热压缩变形行为.
机械工程材料,2011,35(10):41-45
|
CSCD被引
2
次
|
|
|
|
5.
孟卫华. 高温合金GH4133B动态本构模型与失效模型研究.
应用数学和力学,2018,39(6):681-688.6
|
CSCD被引
2
次
|
|
|
|
6.
赵荣国. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展行为研究.
机械工程学报,2011,47(18):55-65
|
CSCD被引
22
次
|
|
|
|
7.
Hu D Y. Experimental study on creep–fatigue interaction behavior of GH4133B superalloy.
Materials Science & Engineering: A,2009,515(1/2):183-189
|
CSCD被引
11
次
|
|
|
|
8.
周海萍. 基于动态再结晶动力学方程的镍基高温合金热变形流变应力预测.
稀有金属材料与工程,2018,47(11):3329-3337
|
CSCD被引
2
次
|
|
|
|
9.
Tetsui T. A newly developed hot worked TiAl alloy for blades and structural components.
Scripta Materialia,2002,47(6):399-403
|
CSCD被引
37
次
|
|
|
|
10.
Cai D Y. Development of processing maps for a Ni-based superalloy.
Materials Characterization,2007(58):941-946
|
CSCD被引
19
次
|
|
|
|
11.
Brooks J W. Three-dimensional finite element modelling of a titanium aluminide aerofoil forging.
Journal of Materials Processing Technology,1998,80/81:149-155
|
CSCD被引
14
次
|
|
|
|
12.
Lin Y C. A physicallybased constitutive model for a typical nickel-based superalloy.
Computational Materials Science,2014,83:282-289
|
CSCD被引
54
次
|
|
|
|
|