黑土耕作区土壤含水量空间自相关及农业生产分区
Spatial Autocorrelation of Soil Moisture and Agricultural Zoning in a Mollisol Tillage Area of Northeast China
查看参考文献29篇
文摘
|
论文以东北黑土耕作区土壤表层(0~20 cm)含水量为研究对象,基于3S技术和Moran指数进行空间自相关分析,掌握黑土区土壤表层含水量的空间自相关类型及其分布格局,划定农业生产中的优先区域,为农业生产中土壤含水量的分区管理、农业设施合理配置提供理论依据。结果表明:海沟河小流域土壤含水量空间差异大,变异程度为中等变异,受人类活动等随机因素的影响较大;全局空间自相关系数为0.417 7,表现出较强的正自相关特征,且不同方向存在较大差异;局部空间自相关系数为0.374 4,局部空间自相关类型主要为H-H型(高-高关联)和L-L型(低-低关联),空间集聚特征明显, H-H型主要分布于研究区西北部地势平坦的地区,形成高含水量且高度空间自相关的格局,耕作优势突出,为农业生产中的优先区域,L-L型分布于东部山地与平原的过渡带,形成低含水量集聚的格局,为农业生产中的一般区域。基于土壤含水量空间自相关分布特征,进行农业生产区域的划定及分区管理具有重要的实践价值。 |
其他语种文摘
|
The paper mainly analyzed the spatial distribution pattern and spatial autocorrelation of surface soil moisture (0-20 cm) in a mollisol tillage area of Northeast China with the Moran index model of global and local spatial autocorrelation indicators. The paper discovered the spatial structure and distribution pattern of surface soil moisture and provided a basis for agricultural zoning and facility allocation. The results show that there is great spatial difference of surface soil moisture with moderate variation in the study area. The spatial variation is mostly caused by random factors such as human activities, tillage practice and so on. The global spatial autocorrelation coefficient is 0.417 7,showing strong positive autocorrelation, and there exists anisotropy of spatial autocorrelation. The local spatial autocorrelation coefficient is 0.374 4,mainly displaying H-H (high- high correlation) and L-L (low-low correlation) clusters, which shows the coexistence pattern of high value agglomeration and low value agglomeration. The H- H agglomerations mainly distribute in the flat area in the northwest of the study area. The H-H area has very good tillage condition and has priority in developing agriculture. When farming in this area, people can take full advantage of the nature to achieve high yield with low cost. The L-L agglomerations mainly distribute in the transition zone of mountain and plain in the east part of the study area where the surface soil moisture content is low. When farming in this area, people should invest more on agricultural irrigation infrastructure. In a word, this research could serve in allocation of regional water resources and agricultural facilities. |
来源
|
自然资源学报
,2017,32(11):1930-1941 【核心库】
|
DOI
|
10.11849/zrzyxb.20161062
|
关键词
|
黑土耕作区
;
土壤含水量
;
空间自相关
;
分区管理
|
地址
|
1.
东北农业大学资源与环境学院, 哈尔滨, 150030
2.
武汉市江岸区新村街道办事处, 武汉, 430012
3.
黑龙江省环境科学研究院, 哈尔滨, 150036
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3037 |
学科
|
农业基础科学 |
基金
|
国家重点研发计划课题子课题
;
国家自然科学基金项目
;
东北农业大学青年才俊项目
|
文献收藏号
|
CSCD:6110247
|
参考文献 共
29
共2页
|
1.
Tobler W R. A computer movie simulating urban growth in the Detroit region.
Economic Geography,1970,46(2):234-240
|
CSCD被引
627
次
|
|
|
|
2.
Tobler W R. On the First Law of Geography: A reply.
Annals of the Association of American Geographers,2004,94(2):304-310
|
CSCD被引
60
次
|
|
|
|
3.
Miller H J. Tober's first law and spatial analysis.
Annals of the Association of American Geographers,2004,94(2):284-289
|
CSCD被引
57
次
|
|
|
|
4.
Barnes T J. A paper related to everything but more related to local things.
Annals of Association of American Geographers,2004,94(2):278-283
|
CSCD被引
4
次
|
|
|
|
5.
李小文. 地理学第一定律与时空邻近度的提出.
自然杂志,2007,29(2):69-71
|
CSCD被引
57
次
|
|
|
|
6.
孙俊. 地理学第一定律之争及其对地理学理论建设的启示.
地理研究,2012,31(10):1749-1763
|
CSCD被引
27
次
|
|
|
|
7.
Anselin L.
What is special about spatial data alternative perspectives on spatial data analysis. Technical Report 89-4,1989:89-93
|
CSCD被引
1
次
|
|
|
|
8.
Kim D. Spatial autocorrelation potentially indicates the degree of changes in the predictive power of environment factors for plant diversity.
Ecological Indicators,2016,60:1130-1141
|
CSCD被引
3
次
|
|
|
|
9.
张秀英. 基于GIS的黄土高原小流域土壤水分时空分布模拟 --以定西安家沟为例.
自然资源学报,2005,20(1):132-139
|
CSCD被引
17
次
|
|
|
|
10.
熊昌盛. 基于局部空间自相关的高标准基本农田建设分区.
农业工程学报,2015,31(22):276-284
|
CSCD被引
54
次
|
|
|
|
11.
李宝庆. 土壤水研究的进程和展望.
地理研究,1989,8(3):102-108
|
CSCD被引
5
次
|
|
|
|
12.
雷志栋. 土壤水研究进展与评述.
水科学进展,1999,10(3):311-318
|
CSCD被引
133
次
|
|
|
|
13.
段良霞. 黄土高原沟壑区坡地土壤水分状态空间模拟.
水科学进展,2015,26(5):649-660
|
CSCD被引
15
次
|
|
|
|
14.
Younis S M Z. Estimation of soil moisture using multispectral and FTIR techniques.
The Egyptian Journal of Remote Sensing and Space Sciences,2015,18:151-161
|
CSCD被引
7
次
|
|
|
|
15.
Ranatunga K. Review of soil water models and their applications in Australia.
Environmental Modeling and Software,2008,23:1182-1206
|
CSCD被引
4
次
|
|
|
|
16.
Kim S. Time series modeling of soil moisture dynamics on a steep mountainous hillside.
Journal of Hydrology,2016,536:37-49
|
CSCD被引
4
次
|
|
|
|
17.
肖德安. 土壤水研究进展与方向评述.
生态环境学报,2009,18(3):1182-1188
|
CSCD被引
28
次
|
|
|
|
18.
Ji X Y. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow.
Advances in Water Resources,2015,86:155-169
|
CSCD被引
1
次
|
|
|
|
19.
高凤杰. 黑土丘陵区小流域土壤有机质空间变异及分布格局.
环境科学,2016,37(5):1915-1922
|
CSCD被引
23
次
|
|
|
|
20.
Zhang S L. Spatial heterogeneity of soil C:N ratio in a mollisol watershed of Northeast China.
Land Degradation and Development,2016,27:295-304
|
CSCD被引
3
次
|
|
|
|
|