聚苯胺基柔性凝胶电极的制备及其在超级电容器的应用
Preparation and application of polyaniline-based flexible gel electrodes in supercapacitors
查看参考文献25篇
文摘
|
可承受大而复杂变形的能量存储设备的开发对于新兴可穿戴电子设备至关重要。目前,由导电聚合物制成的水凝胶在加工过程中实现了高电导率和多功能性的融合。利用简单的两步共聚方法成功构建了一种具有丰富微孔结构的水凝胶超级电容器:聚乙烯醇(PVA)和聚丙烯酰胺(PAM)形成双交联网络水凝胶,赋予刚性聚苯胺柔性,此外,聚丙烯酰胺提高了聚苯胺基水凝胶的机械强度,使得聚苯胺基(NPP)水凝胶具有良好的力学和电化学性能,在1A·g~(-1)其抗拉强度和比电容分别为0.3MPa与269.12F·g~(-1)。聚苯胺(PANI)的添加减小了聚乙烯醇和聚丙烯酰胺双交联网络水凝胶(PP)电极的内阻,其修饰后的电阻值为39.184Ω,这使得NPP水凝胶实现了较高的电子传输能力。这种水凝胶的灵活开发集成为能源系统提供了一种替代策略,适合于超级电容器等多种应用。 |
其他语种文摘
|
The development of energy storage devices that can withstand large and complex deformation is crucial for emerging wearable electronic devices.At present,hydrogels made of conductive polymers have achieved the fusion of high conductivity and versatility during processing.A simple two-step copolymerization method was used to successfully construct a hydrogel supercapacitor with a rich microporous structure:polyvinyl alcohol(PVA)and polyacrylamide(PAM)form a double crosslinked network hydrogel, which endows rigid polymer aniline with flexibility.In addition, polyacrylamide improves the mechanical strength of polyaniline-based hydrogels,making polyanilinebased(NPP)hydrogels have good mechanical and electrochemical properties,and the tensile strength and specific capacitance are 0.3MPa and 269.12F·g~(-1) under 1A·g~(-1),respectively.The addition of polyaniline(PANI)reduces the internal resistance of polyvinyl alcohol and polyacrylamide double cross-linked network hydrogel(PP)electrode,and its modified resistance value is 39.184Ω,which makes the NPP hydrogel realize higher electron transmission capacity.The flexible development and integration of such hydrogels provide an alternative strategy of energy systems for diverse applications such as supercapacitors. |
来源
|
材料工程
,2023,51(6):38-45 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000594
|
关键词
|
超级电容器
;
聚苯胺
;
柔性
;
水凝胶
|
地址
|
石河子大学, 新疆兵团化工绿色加工重点实验室, 新疆, 石河子, 832003
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7505502
|
参考文献 共
25
共2页
|
1.
Wang X. ChemInform abstract:flexible energy-storage devices:design consideration and recent progress.
Cheminform,2014,26(28):4763-4782
|
CSCD被引
1
次
|
|
|
|
2.
Avil A G. Smart textiles:tough cotton.
Nature Nanotechnology,2008,3(8):458-459
|
CSCD被引
5
次
|
|
|
|
3.
Lu X. Flexible solid-state supercapacitors: design,fabrication and applications.
Energy and Environmental Science,2014,7(7):2160-2181
|
CSCD被引
80
次
|
|
|
|
4.
Wang K. Conducting polymer nanowire arrays for high performance supercapacitors.
Small,2014,10(1):14-31
|
CSCD被引
58
次
|
|
|
|
5.
Dingshan Y U. Emergence of fiber supercapacitors.
Chemical Society Reviews,2015,44(3):647-662
|
CSCD被引
26
次
|
|
|
|
6.
王瑶. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能.
材料工程,2021,49(9):51-59
|
CSCD被引
4
次
|
|
|
|
7.
Dubal D P. Supercapacitors based on flexible substrates:an overview.
Energy Technology,2014,2(4):306-310
|
CSCD被引
10
次
|
|
|
|
8.
Zhu J. Graphene and graphene-based materials for energy storage applications.
Small,2014,10(17):3480-3498
|
CSCD被引
37
次
|
|
|
|
9.
Shi W. Achieving high specific charge capacitances in Fe_3O_4/reduced graphene oxide nanocomposites.
Journal of Materials Chemistry,2011,21(10):3422-3427
|
CSCD被引
19
次
|
|
|
|
10.
Tan H T. Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes.
ACS Nano,2014,8(4):4004-4014
|
CSCD被引
4
次
|
|
|
|
11.
Simon P. Materials for electrochemical capacitors.
Nature Materials,2008,7(11):845-854
|
CSCD被引
692
次
|
|
|
|
12.
Miao Y E. Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors.
RSC Advances,2015,5(33):26189-26196
|
CSCD被引
2
次
|
|
|
|
13.
Wei F. Porous graphene-carbon nanotube hybrid paper as flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors.
RSC Advances,2015,5(39):31064-31073
|
CSCD被引
1
次
|
|
|
|
14.
Zhang H. Extremely stretchable,sticky and conductivedouble-network ionic hydrogel for ultrastretchable and compressible supercapacitors.
Chemical Engineering Journal,2020,387:124105-124114
|
CSCD被引
5
次
|
|
|
|
15.
Li L. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage.
Nature Communications,2020,11(1):62-73
|
CSCD被引
20
次
|
|
|
|
16.
Chen F. Strong and stretchable polypyrrole hydrogels with biphase microstructure as electrodes for substrateree stretchable supercapacitors.
Advanced Materials Interfaces,2019,6(11):1900133-1900141
|
CSCD被引
2
次
|
|
|
|
17.
Bowen Y. Ultrahigh-conductivity polymer hydrogels with arbitrary structures.
Advanced Materials,2017,29(28):1700974-1700980
|
CSCD被引
1
次
|
|
|
|
18.
寻之玉. 聚合物电解质在超级电容器中的研究进展.
材料工程,2019,47(11):71-83
|
CSCD被引
6
次
|
|
|
|
19.
郑好. 基于水凝胶吸附聚苯胺超级电容器的制备与性能研究.
化学工程与装备,2020(4):4-5
|
CSCD被引
1
次
|
|
|
|
20.
Godiya C B. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater.
Journal of Hazardous Materials,2018,364:28-38
|
CSCD被引
14
次
|
|
|
|
|