利用光束抖动反演横向风速垂直分布的研究
Inversion of vertical distribution of transverse wind speed by using beam jitter
查看参考文献12篇
文摘
|
湍流冻结条件下,利用两个位置探测抖动信号的时空交叉相关函数,提出了反演横向风速垂直分布的理论模型。该模型的两个参数分别为湍流廓线和相关函数在延迟时间为0处的导数。假定横向风速满足高斯模型,采用遗传算法进行数值仿真。通过对两种典型湍流模型进行反演计算,发现反演的风廓线和理论风廓线一致性好,相对误差不超过3.3%和1.6%。改变湍流廓线的特征高度并进行反演计算,结果表明湍流强度存在较大误差时,该模型仍可用于低层横向风速垂直分布的反演。 |
其他语种文摘
|
Under the condition of turbulent freezing, the theory model of inversing the vertical distribution of transverse wind speed is proposed by using space-time cross correlation function of two position detection jitter signals. Two parameters of this model are turbulence profile and derivation of cross correlation function at the delay time of zero. Supposing that transverse wind speed is accord with Gauss model, numerical simulation is carried out with genetic algorithm. Through the inversion calculation of two typical turbulence models, it's found that the inversion wind profiles are coincide with the theoretical wind profiles, and the relative error is not more than 3.3% and 1.6%, respectively. The characteristic height of the turbulent profile is changed and inversion calculation is carried out. Results show that when there is a large error in the turbulence intensity, the model can still be applied to inverse vertical distribution of transverse wind speed in the lower layer. |
来源
|
量子电子学报
,2017,34(5):623-627 【扩展库】
|
DOI
|
10.3969/j.issn.1007-5461.2017.05.017
|
关键词
|
大气光学
;
横向风速
;
反演
;
数值仿真
|
地址
|
中国科学院安徽光学精密机械研究所, 中国科学院大气成分与光学重点实验室, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-5461 |
学科
|
大气科学(气象学);电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6086298
|
参考文献 共
12
共1页
|
1.
Yuan Ke'e. Measurement of path transverse wind velocity profile using light forward scattering scintillation correlation method.
光谱学与光谱分析,2014,34(7):1780-1784
|
CSCD被引
1
次
|
|
|
|
2.
Wu Wuming. Analysis of atmosphere turbulence optical parameters.
强激光与粒子束,2012,24(9):2022-2026
|
CSCD被引
1
次
|
|
|
|
3.
Zhang Deliang. The influence of transverse wind on performance of an adaptive optics system in horizontal atmosphere.
光学学报,1997,15(5):614-620
|
CSCD被引
1
次
|
|
|
|
4.
Tian Yongzhi. Remote sensing of crosswind speed by a scintillometer in boundary layer.
大气与环境光学学报,2012,7(5):333-337
|
CSCD被引
1
次
|
|
|
|
5.
Roopashree M B. A review of atmospheric wind speed measurement techniques with shack Hartmann wavefront imaging sensor in adaptive optics.
Journal of the Indian Institute of Science,2013,93(1):67-84
|
CSCD被引
1
次
|
|
|
|
6.
Tichkule S. Optical anemometry based on the temporal cross-correlation of angle-of-arrival fluctuations obtained from spatially separated light sources.
Applied Optics,2012,51(21):5272-5282
|
CSCD被引
3
次
|
|
|
|
7.
Huang Ketao. Inversion algorithm and numerical simulation of DCIM lidar measurement turbulence profile.
量子电子学报,2014,31(3):348-354
|
CSCD被引
1
次
|
|
|
|
8.
Ma Houyong. Inversion techniques for turbulence profile lidar.
量子电子学报,2011,28(1):88-90
|
CSCD被引
2
次
|
|
|
|
9.
Shen Hong. Characteristics of the temporal spectrum of atmospheric scintillation.
红外与激光工程,2015,44(4):1301-1305
|
CSCD被引
1
次
|
|
|
|
10.
Greenwood D P. Bandwidth specification for adaptive optics systems.
Journal of the Optical Society of America,1977,67(3):390-393
|
CSCD被引
21
次
|
|
|
|
11.
Luo Xi. Investigation on atmospheric optical turbulence profile statistical mode by stochastic parallel gradient descent algorithm.
光学学报,2012,32(9):14-20
|
CSCD被引
2
次
|
|
|
|
12.
Wu Xiaoqing. Observations of atmospheric turbulence by balloon-borne instrument at Xinglong station.
量子电子学报,1996,13(4):385-390
|
CSCD被引
2
次
|
|
|
|
|