冠菌素诱导番茄对青枯病原菌( Ralstonia solanacearum)抗性的转录组分析
Transcriptome analysis of coronatine-induced resistance to Ralstonia solanacearum in tomato plants
查看参考文献34篇
文摘
|
青枯雷尔氏菌(Ralstonia solanacearum)引起的青枯病严重威胁着番茄的产量和品质。冠菌素(Coronatine,COR)是由丁香假单胞菌(Pseudomonas syringae)产生的化合物,结构类似于茉莉酸异亮氨酸(JA-Ile)。本研究通过观察COR处理番茄后接种R. solanacearum的症状表现,发现COR处理的番茄植株比未处理的对照组青枯病发生症状轻。为进一步探究COR如何影响番茄对青枯病的抗性,对COR处理后接种R. solanacearum 24 h的番茄样品进行转录组测序分析,结果发现,COR处理共诱导了2122个差异表达基因,包括998个上调表达基因和1124个下调表达基因。通过对差异表达基因进行GO和KEGG富集,发现COR主要影响植物-病原菌互作通路及植物激素信号转导途径相关基因的表达。此外,COR还诱导JA合成通路相关基因的上调表达,以及抑制光合作用相关基因的表达。研究结果为深入揭示COR在植物-青枯病原菌互作过程中的作用奠定了理论基础。 |
其他语种文摘
|
The bacterial wilt caused by Ralstonia solanacearum has brought a serious threat to tomato production. Coronatine (COR), structurally similar to JA-Ile (JA-isoleucine), is a compound produced by Pseudomonas syringae. In this study, we observed that pre-treatment of tomato seedlings with COR alleviated the symptoms caused by R. solanacearum. To investigate how COR affects tomato resistance to R. solanacearum, transcriptome sequencing of tomato seedlings inoculated with the pathogen 24 h after COR treatment was carried out. Analysis of RNA-seq data showed that COR treatment induced a total of 2122 differentially expressed genes (DEGs), including 998 up-regulated genes and 1124 down-regulated genes. DEGs annotation and pathway enrichment were conducted using GO database and KEGG database, and the results showed that COR affected the expression of genes related to plant-pathogen interaction pathway and plant hormone signaling pathways. Meanwhile, COR induced the up-regulation of genes involved in the jasmonic acid synthesis pathway and inhibited the expression of photosynthesis-related genes. Our results provide a theoretical basis for revealing the role of COR in plant-microbe interaction. |
来源
|
植物病理学报
,2024,54(2):343-354 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001611
|
关键词
|
冠菌素
;
青枯病原菌
;
番茄
;
转录组测序
|
地址
|
1.
山西农业大学园艺学院, 太谷, 030801
2.
上海交通大学农业与生物学院, 上海, 200240
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
上海市科技兴农技术创新项目
;
山西省重点研发项目
;
山西省现代农业(蔬菜)产业体系建设专项资金
;
晋中国家农高区番茄智慧标准化技术研究教授博士工作站启动专项
|
文献收藏号
|
CSCD:7863498
|
参考文献 共
34
共2页
|
1.
Hayward A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.
Annual Review of Phytopathology,1991,29:65-87
|
CSCD被引
170
次
|
|
|
|
2.
Ichihara A. The structure of coronatine.
Journal of the American Chemical Society,1977,99:636-637
|
CSCD被引
1
次
|
|
|
|
3.
Katsir L. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine.
Proceedings of the National Academy of Sciences of the United States of America,2008,105(19):7100-7105
|
CSCD被引
1
次
|
|
|
|
4.
Sheard L B. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.
Nature,2010,468(7322):400-405
|
CSCD被引
114
次
|
|
|
|
5.
Ballare C L. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals.
Trends in Plant Science,2011,16(5):249-257
|
CSCD被引
2
次
|
|
|
|
6.
Wang Y. A bacterial effector protein uncovers a plant metabolic pathway involved in tolerance to bacterial wilt disease.
Molecular Plant,2021,14(8):1281-1296
|
CSCD被引
1
次
|
|
|
|
7.
Li J. Effect of coronatine on AsA-GSH cycle of cotton seedling under low temperature stress (in Chinese).
棉花学报,2020,32(5):381-391
|
CSCD被引
1
次
|
|
|
|
8.
Wu H. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine.
Journal of Plant Growth Regulation,2011,31:113-123
|
CSCD被引
1
次
|
|
|
|
9.
Zhou Y Y. Preliminary study of physiological base of heat resistance induced by coronatine in wheat seedlings (in Chinese).
麦类作物学报,2011,31(1):139-142
|
CSCD被引
2
次
|
|
|
|
10.
Xie Z. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity.
Journal of Plant Physiology,2008,165(4):375-384
|
CSCD被引
1
次
|
|
|
|
11.
Schuler G. Coronalon: a powerful tool in plant stress physiology.
FEBS Letters,2004,563(1):17-22
|
CSCD被引
1
次
|
|
|
|
12.
Wang K H. Transcriptome profiling in Ralstonia solanacearum RsT02 treated with methyl gallate (in Chinese).
植物病理学报,2019,49(2):192-202
|
CSCD被引
1
次
|
|
|
|
13.
Jacobs J M. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.
mBio,2012,3(4):e00114-12
|
CSCD被引
8
次
|
|
|
|
14.
French E. Whole root transcriptomic analysis suggests a role for Auxin pathways in resistance to Ralstonia solanacearum in tomato.
Molecular Plant-Microbe Interactions,2018,31(4):432-444
|
CSCD被引
1
次
|
|
|
|
15.
Cock P J. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.
Nucleic Acids Research,2010,38(6):1767-1771
|
CSCD被引
2
次
|
|
|
|
16.
Kim D. HISAT: a fast spliced aligner with low memory requirements.
Nature Methods,2015,12(4):357-360
|
CSCD被引
28
次
|
|
|
|
17.
Du M. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato.
The Plant Cell,2017,29(8):1883-1906
|
CSCD被引
1
次
|
|
|
|
18.
Wientjes E. LHCII is an antenna of both photosystems after longterm acclimation.
Biochimica Biophysica Acta,2013,1827(3):420-426
|
CSCD被引
6
次
|
|
|
|
19.
Stirbet A. Photosynthesis: basics, history and modelling.
Annals of Botany,2020,126(4):511-537
|
CSCD被引
2
次
|
|
|
|
20.
Velez-Ramirez A I. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato.
Nature Communications,2014,5:4549
|
CSCD被引
1
次
|
|
|
|
|