城轨列车制动盘SiC_p/A356复合材料热疲劳裂纹扩展机理
Thermal fatigue crack propagation mechanism of SiC_p/A356 composites for urban rail train brake disc
查看参考文献25篇
文摘
|
为研究制动盘服役温度载荷及材料微结构对SiC_p/A356复合材料热疲劳裂纹扩展行为的影响,明确其热疲劳裂纹扩展微观机理,开展SiC_p/A356复合材料热疲劳裂纹扩展实验。结果表明:裂纹扩展过程包括由SiC颗粒偏转作用和二次裂纹释放扩展驱动力导致的缓慢扩展阶段和主裂纹与裂纹扩展前端微损伤连接的快速扩展阶段;加热温度较低时,裂纹扩展的"台阶状"特征明显,整体扩展速率较低,裂纹宽度较小,裂纹扩展方式为颗粒断裂、轻量基体撕裂和沿界面开裂;加热温度较高时,"斜直线跃升"阶段更为明显,裂纹宽度较大且扩展速率较高,裂纹扩展以颗粒脱落以及大幅度基体撕裂为主;主裂纹总是通过选择沿SiC颗粒群或者直接穿过 α-Al基体以阻力较小的方式向前扩展,Si相承载时极易发生断裂,成为裂纹扩展源,同时裂纹扩展前端的微损伤对其扩展具有引导作用。 |
其他语种文摘
|
In order to study the influence of the service temperature load and material microstructure on the thermal fatigue crack growth behavior of SiC_p/A356 composites,and to clarify the microscopic mechanism of thermal fatigue crack growth,the thermal fatigue crack growth test of SiC_p/A356 composites was carried out.The results show that the crack growth process includes the slow growth stage caused by the deflection of SiC particles and the release of the driving force of the secondary crack growth,and the rapid growth stage where the main crack is connected with the micro-damage front end of the crack growth.When the heating temperature is low,the"step-like"feature of crack growth is obvious,the overall growth rate is slower,and the crack width is smaller,the crack propagation methods are particle fracture,light-mass matrix tearing and cracking along the interface. When the heating temperature is higher,the"oblique straight-line jump"stage is more obvious,the crack width is large and the growth rate is high,the crack growth is dominated by particle shedding and large-scale matrix tearing.Main crack always propagates forward with less resistance by choosing to follow the SiC particle group or directly pass through the α-Al matrix,when Si phase is loaded,it is easy to fracture and become the source of crack propagation.At the same time,the micro-damage at the front end of the crack propagation has a guiding effect on the crack propagation. |
来源
|
材料工程
,2022,50(7):165-175 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000521
|
关键词
|
SiC_p/A356复合材料
;
服役温度载荷
;
热疲劳
;
裂纹扩展微观机理
|
地址
|
1.
北京交通大学机械与电子控制工程学院, 北京
2.
北京林业大学工学院, 北京
3.
中国铁道科学研究院金属及化学研究所, 北京
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
中央高校基本科研业务费专项资金
;
中央高校基本科研重点基金
|
文献收藏号
|
CSCD:7261536
|
参考文献 共
25
共2页
|
1.
杨智勇.
高速客车铝基复合材料制动盘热损伤和结构设计研究,2008
|
CSCD被引
5
次
|
|
|
|
2.
滕杰.
高速列车用铝基复合材料制动盘及其闸片的制备、摩擦磨损性能及机理研究,2006
|
CSCD被引
4
次
|
|
|
|
3.
齐海波. SiC颗粒增强铝基复合材料制动盘的研究.
复合材料学报,2001,18(1):62-66
|
CSCD被引
10
次
|
|
|
|
4.
陈春峰.
铝基复合材料制动盘的设计及制造研究,2007
|
CSCD被引
1
次
|
|
|
|
5.
Zeuner T. 高速列车使用铝基复合材料制动圆盘.
国外机车车辆工艺,1999(2):19-21
|
CSCD被引
6
次
|
|
|
|
6.
李微. SiC颗粒尺寸对喷射沉积铝硅复合材料高温疲劳性能的影响.
材料热处理学报,2021,42(1):34-43
|
CSCD被引
2
次
|
|
|
|
7.
Li W. Thermomechanical fatigue behavior of spray-deposited SiC_p/Al-Si composite applied in the high-speed railway brake disc.
International Journal of Photoenergy,2020(1):1-11
|
CSCD被引
1
次
|
|
|
|
8.
Ayyar A. Microstructure-based modeling of crack growth in particle reinforced composites.
Composites Science and Technology,2006,66(13):1980-1994
|
CSCD被引
14
次
|
|
|
|
9.
张俊清. 高速列车制动盘 SiCp/A356 颗粒增强铝基复合材料的热疲劳性能研究.
工程力学,2011,28(8):252-256
|
CSCD被引
4
次
|
|
|
|
10.
Tevatia A. Influence of residual thermal stresses on fatigue crack growth life of discontinuous reinforcements in metal matrix composites.
Fatigue & Fracture of Engineering Materials &Structures,2017,40(1):81-88
|
CSCD被引
2
次
|
|
|
|
11.
刘奋成. 搅拌摩擦加工碳纳米管增强7075铝基复合材料的疲劳性能.
稀有金属材料与工程,2015,44(7):1786-1790
|
CSCD被引
2
次
|
|
|
|
12.
Luo Y. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review.
Frontiers of Mechanical Engineering,2018,13(4):461-481
|
CSCD被引
2
次
|
|
|
|
13.
颜新宇. HfC颗粒对WC/Co复合材料裂纹萌生和扩展行为的影响.
西北工业大学学报,2019,37(3):628-635
|
CSCD被引
5
次
|
|
|
|
14.
Chen Z. The role of particles in fatigue crack propagation of aluminum matrix composites and casting aluminum alloys.
Journal of Materials Science & Technology,2007,23(2):213-216
|
CSCD被引
5
次
|
|
|
|
15.
Qian L. In-situ observations of fracture processes in 0.6μm and 9.5μm SiCP/6061Al composites.
Materials Transactions,2005,46(1):34-41
|
CSCD被引
1
次
|
|
|
|
16.
潘利科.
铝基复合材料摩擦制动服役特性及失效机制研究,2017
|
CSCD被引
1
次
|
|
|
|
17.
李翔.
SiC_p/A356复合材料裂纹扩展机理研究,2018
|
CSCD被引
1
次
|
|
|
|
18.
Zhang X X. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3Drealistic digital microstructure models.
Composite Structures,2016,137:18-32
|
CSCD被引
7
次
|
|
|
|
19.
Suresh S. Aluminium-titanium diboride(Al-TiB2)metal matrix composites:challenges and opportunities.
Procedia Engineering,2012,38:89-97
|
CSCD被引
10
次
|
|
|
|
20.
范映伟. 金属基复合材料微观损伤行为的研究进展.
材料热处理学报,2020,41(10):1-23
|
CSCD被引
3
次
|
|
|
|
|