攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义
Geochemical Characteristics and Geological Significance of Cobalt in Cobalt-Rich Sulfide of Hongge V-Ti Magnetite Ore Field,Panxi
查看参考文献38篇
文摘
|
攀西红格钒钛磁铁矿矿田白草矿区发育富钴硫化物矿物,关于其成因和形成环境方面的研究较为薄弱。本文采用矿物学、矿物化学、地球化学等方法对其进行系统研究。矿石中主要富钴硫化物为磁黄铁矿(Po)、黄铁矿(Py)、镍黄铁矿(Pn)、硫钴镍矿(Se)。磁黄铁矿Co、Ni平均质量分数分别为0.21%、 0.42%,Co/Ni平均值为1.10;黄铁矿Co、Ni平均质量分数分别为0.18%、0.29%,Co/Ni平均值为0.77;镍黄铁矿Co、Ni平均质量分数分别为2.67%、34.30%,Ni/Fe平均值为1.08、S/Fe平均值为1.91、M/S #平均值为1.13;硫钴镍矿Co、Ni平均质量分数分别为24.30%、22.90%,Co/Ni平均值为1.06。根据Po-Py矿物温度计,白草矿区富钴硫化物结晶温度在267~490℃之间,表明其形成于中高温的条件。通过与地幔包体镍黄铁矿S/Fe、M/S #特征值的对比,结合磁黄铁矿具有陨硫铁(Tr)同质多象晶体的特征,认为白草矿区硫化物具有地幔源的特征,说明成矿物质来源于地幔。白草矿区钴地球化学特征研究表明,在硫化物熔体分离过程中,钴迁移至单硫化物固溶体形成Po-Py固溶体,再由Po-Py固溶体中迁移至Pn、Se,形成了Se、Pn、Po-Py、Ccp(黄铜矿)中Co质量分数依次递减的现象。 |
其他语种文摘
|
Cobalt rich sulfide minerals are developed in Baicao mining area of Hongge ore field in Panxi.The research on their genesis and formation environment is relatively weak.In this paper,the mineralogy and mineral chemistry are used for a systematic study.The results show that the main cobalt-rich sulfides in the ore are pyrrhotite,pyrite,pentlandite,and siegenite.The average contents of Co and Ni in pyrrhotite are 0.21%and 0.42%respectively,and the average value of Co/Ni is 1.10;The average contents of Co and Ni in pyrite are 0.18%and 0.29%respectively,and the average value of Co/ Ni is 0.77;The average contents of Co and Ni in pentlandite are 2.67%and 34.30%respectively,and the average value of Ni/Fe,S/Fe and M/S#are 1.08,1.91and 1.13respectively;The average contents of Co and Ni in siegenite are 24.30% and 22.90% respectively,and the average value of Co/Ni is 1.06. According to the pyrrhotite-pyrite mineral thermometer,the crystallization temperature of the Baicao cobalt rich sulfide is about 267-490℃,which indicates that it was formed at medium high temperature. Compared with the characteristic values of S/Fe and M/S# of the mantle xenolith pentlandite,the pyrrhotite has the characteristics of troilite(Tr)homomorphic polycrystal,which reflects that the oreforming materials were derived from the mantle.The geochemical characteristics of cobalt in Baicao mining area show that in the process of sulfide melt separation,cobalt migrated to mono-sulfide solid solution to form Po-Py solid solution,and then migrated further to form Pn and Se solid solution, forming the phenomenon that the content of Co in Se,Pn,Po-Py and Ccp decreases gradually. |
来源
|
吉林大学学报. 地球科学版
,2021,51(6):1740-1752 【核心库】
|
DOI
|
10.13278/j.cnki.jjuese.20210027
|
关键词
|
富钴硫化物
;
钴
;
电子探针
;
地球化学
;
白草矿区
;
红格钒钛磁铁矿矿田
|
地址
|
1.
长安大学地球科学与资源学院, 西安, 710065
2.
自然资源部岩浆作用成矿与找矿重点实验室, 自然资源部岩浆作用成矿与找矿重点实验室, 西安, 710065
3.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-5888 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
中央高校基本科研业务费专项资金
;
陕西省自然科学基金
;
财通矿山新兴关键矿产资源综合研究项目
|
文献收藏号
|
CSCD:7097240
|
参考文献 共
38
共2页
|
1.
刘英俊.
元素地球化学,1984:101-112
|
CSCD被引
12
次
|
|
|
|
2.
宋谢炎. 峨眉大火成岩省钒钛磁铁矿矿床地质特征及成因.
矿物岩石地球化学通报,2018,37(6):1003-1018
|
CSCD被引
11
次
|
|
|
|
3.
Wang D C. New Constraints on the Open Magma Chamber Processes in the Formation of Giant Hongge Fe-Ti-V Oxide Deposit.
Lithos,2020
|
CSCD被引
1
次
|
|
|
|
4.
Lu Y G. Geochemistry and Genesis of Magmatic Ni-Cu-(PGE)and PGE-(Cu)-(Ni)Deposits in China.
Ore Geology Reviews,2019,107:863-887
|
CSCD被引
8
次
|
|
|
|
5.
Liang Q L. Implications of Nano-and Micrometer-Size Platinum-Group Element Minerals in Base Metal Sulfides of the Yangliuping Ni-Cu-PGE Sulfide Deposit,SW China.
Chemical Geology,2019,517:7-21
|
CSCD被引
9
次
|
|
|
|
6.
Ding X. Iron Isotope Fractionation During Sulfide Liquid Segregation and Crystallization at the Lengshuiqing Ni-Cu Magmatic Sulfide Deposit, SW China.
Geochimica et Cosmochimica Acta,2019,261:327-341
|
CSCD被引
8
次
|
|
|
|
7.
Tang Q Y. Sr-Nd-Hf-O Isotope Constraints on Crustal Contamination and Mantle Source Variation of Three Fe-Ti-V Oxide Ore Deposits in the Emeishan Large Igneous Province.
Geochimica et Cosmochimica Acta,2021,292:364-381
|
CSCD被引
4
次
|
|
|
|
8.
Xiong Y Q. Distal Relationship of the Taihexian Pb-Zn-(Au)Deposit to the Dengfuxian Magmatic-Hydrothermal System, South China:Constraints from Mineralogy,Fluid Inclusion,H-O-Pb and in Situ S Isotopes.
Ore Geology Reviews,2020,127:103826
|
CSCD被引
4
次
|
|
|
|
9.
Wang K. Genesis of Giant Fe-Ti Oxide Deposits in the Panxi Region,SW China:A Review.
Geological Journal,2019
|
CSCD被引
1
次
|
|
|
|
10.
Wang Y J. Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magnetite deposit in the Panxi area, SW China.
Acta Geochimica,2019,38:376-390
|
CSCD被引
2
次
|
|
|
|
11.
Liu P P. In-Situ LA-ICPMS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-Bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province, SW China.
Ore Geology Reviews,2015,65(4):853-871
|
CSCD被引
24
次
|
|
|
|
12.
Wei C. LA-ICP-MS Analyses of Trace Elements in Base Metal Sulfides from Carbonate-Hosted Zn-Pb Deposits,South China:A Case Study of the Maoping Deposit.
Ore Geology Reviews,2021,130(2):103945
|
CSCD被引
12
次
|
|
|
|
13.
Zhang Z Z. Origin of Late Permian Syenite and Gabbro from the Panxi Rift,SW China:The Fractionation Process of Mafic Magma in the Inner Zone of the Emeishan Mantle Plume.
Lithos,2019,346/347:105160
|
CSCD被引
5
次
|
|
|
|
14.
曹永华.
攀枝花层状岩体岩浆演化及钒钛磁铁矿矿床的成因研究,2019:1-26
|
CSCD被引
1
次
|
|
|
|
15.
Desborough G A. Phase Relations of Pyrrhotite.
Economic Geology,1965,60(7):1431-1450
|
CSCD被引
12
次
|
|
|
|
16.
Mansur E T. An Overview of Chalcophile Element Contents of Pyrrhotite, Pentlandite,Chalcopyrite,and Pyrite from Magmatic Ni-Cu-PGE Sulfide Deposits.
Mineralium Deposita,2020,56:179-204
|
CSCD被引
6
次
|
|
|
|
17.
张斌. 陕西凤县二里河铅锌矿床金属硫化物标型特征及地质意义.
世界地质,2021,40(2):265-272
|
CSCD被引
1
次
|
|
|
|
18.
杨阳. 西藏甲玛铜多金属矿床磁黄铁矿标型矿物学特征及其地质意义.
矿床地质,2020,39(2):337-350
|
CSCD被引
4
次
|
|
|
|
19.
陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征.
岩石矿物学杂志,1995,14(4):345-354
|
CSCD被引
17
次
|
|
|
|
20.
吕林素. 吉林红旗岭富家矿床矿石矿物化学和硫同位素特征——对铜镍硫化物矿床成因及成矿过程的约束.
地球学报,2017,38(2):193-207
|
CSCD被引
4
次
|
|
|
|
|