熔体自生陶瓷激光直接能量沉积增材制造研究进展
Research progress in additive manufacturing of melt growth ceramics by laser directed energy deposition
查看参考文献69篇
文摘
|
熔体自生陶瓷是一种原料经熔化凝固获得组织组成的新型陶瓷材料,原子共用的洁净高强度结合界面使其具有接近熔点的优异高温力学性能及组织稳定性,在未来高推重比航空发动机及重型燃气轮机热端部件领域展现了巨大的应用潜力。激光直接能量沉积技术能够有效克服熔体自生陶瓷传统制备方法在周期、能耗及结构复杂度等方面的局限,为直接增材制造熔体自生陶瓷构件提供了新的解决方案,成为国内外研究热点。本文在介绍激光直接能量沉积技术工艺原理的基础上,总结了国内外利用该技术制备的不同熔体自生陶瓷的微观组织特征及其主要力学性能,并综合论述了目前针对微观组织及开裂行为调控所开展的主要研究。基于现有研究进展,对该领域的发展趋势和需要进一步解决的关键科学问题进行了探讨,指出抑制开裂与改善组织性能是目前面临的首要问题,材料和新工艺的发展是突破现有瓶颈、推动熔体自生陶瓷激光直接能量沉积技术发展和应用的关键。 |
其他语种文摘
|
Melt growth ceramics(MGC)is a new type of ceramic material with microstructure obtained by melting and solidification of raw materials.The clean and high-strength bonding interface shared by atoms makes it have excellent high-temperature mechanical properties and microstructure stability close to the melting point.It shows great application potential in the field of high thrust weight ratio aero-engine and heavy gas turbine hot end components in the future.Laser directed energy deposition (LDED)technology can effectively overcome the limitations of traditional preparation methods of MGC in terms of cycle,energy consumption and structural complexity.It provides a new solution for direct additive manufacturing of MGC components,and has become a research hotspot at home and abroad.Based on the introduction of the process principle of LDED technology,the microstructure characteristics and properties of different MGCs prepared by this technology at home and abroad were summarized in this paper,and the main research on the control of microstructure and cracking behaviour was comprehensively discussed.Based on the existing research progress,the development trend and key scientific problems to be further solved in this field were discussed.It was pointed out that inhibiting cracking and improving microstructure and properties are the primary problems faced at present.The development of materials and new processes is the key to breaking through the existing bottleneck and promote the development and application of MGC-LDED. |
来源
|
材料工程
,2022,50(7):1-17 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000838
|
关键词
|
陶瓷
;
增材制造
;
激光
;
直接能量沉积
;
熔体自生
|
地址
|
大连理工大学机械工程学院, 辽宁, 大连
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
机械、仪表工业 |
基金
|
国家自然科学基金项目
;
中央高校基本科研业务费专项资金
;
辽宁省自然科学基金
;
深圳市技术攻关重点项目
|
文献收藏号
|
CSCD:7261520
|
参考文献 共
69
共4页
|
1.
傅恒志.
航空航天材料定向凝固,2015:5-15
|
CSCD被引
2
次
|
|
|
|
2.
刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求.
材料工程,2017,45(10):1-5
|
CSCD被引
41
次
|
|
|
|
3.
Padure N P. Advanced structural ceramics in aerospace propulsion.
Nature Materials,2016,15(8):804-809
|
CSCD被引
111
次
|
|
|
|
4.
Pollock T M. Alloy design for aircraft engines.
Nature Materials,2016,15(8):809-815
|
CSCD被引
74
次
|
|
|
|
5.
张健. 重型燃气轮机定向结晶叶片的材料与制造工艺.
中国材料进展,2013,32(1):12-23
|
CSCD被引
12
次
|
|
|
|
6.
苏海军. 超高温氧化物共晶复合陶瓷研究进展.
中国材料进展,2018,37(6):437-447
|
CSCD被引
3
次
|
|
|
|
7.
Nakagawa N. High temperature strength and thermal stability for melt growth composite.
Journal of the European Ceramic Society,2005,25(8):1251-1257
|
CSCD被引
16
次
|
|
|
|
8.
Waku Y. A ductile ceramic eutectic composite with high strength at 1873K.
Nature,1997,389(6646):49-52
|
CSCD被引
47
次
|
|
|
|
9.
Waku Y. A new ceramic eutectic composite with high strength at 1873K.
Advanced Materials,1998,10(8):615-617
|
CSCD被引
11
次
|
|
|
|
10.
Sayir A. The effect of the microstructure on mechanical properties of directionally solidified Al_2O_3/ZrO_2 (Y_2O_3)eutectic.
Acta Materialia,2000,48(18/19):4691-4697
|
CSCD被引
28
次
|
|
|
|
11.
Parlier M. Potential of directionally solidified eutectic ceramics for high temperature applications.
AerospaceLab,2011(3):1-13
|
CSCD被引
1
次
|
|
|
|
12.
Fujimoto S. Experimental and numerical research on application of MGC material for high temperature turbine nozzles.
Power for Land,Sea,and Air. American Society of Mechanical Engineers. 46997,2005:323-331
|
CSCD被引
1
次
|
|
|
|
13.
Llorca J. Directionally solidified eutectic ceramic oxides.
Progress in Materials Science,2006,51(6):711-809
|
CSCD被引
50
次
|
|
|
|
14.
Gu D. Material-structure-performance integrated laser-metal additive manufacturing.
Science,2021,372(6545):1-15
|
CSCD被引
2
次
|
|
|
|
15.
Ngo T D. Additive manufacturing(3Dprinting):a review of materials,methods, applications and challenges.
Composites:Part B,2018,143:172-196
|
CSCD被引
192
次
|
|
|
|
16.
Pfeiffer S. Direct laser additive manufacturing of high performance oxide ceramics:a stateof-the-art review.
Journal of the European Ceramic Society,2021,41(13):6087-6114
|
CSCD被引
7
次
|
|
|
|
17.
Chen Z W. 3Dprinting of ceramics:a review.
Journal of the European Ceramic Society,2019,39(4):661-687
|
CSCD被引
63
次
|
|
|
|
18.
Wu J M. Selective laser sintering of porous Al_2O_3-based ceramics using both Al_2O_3and SiO_2poly-hollow microspheres as raw materials.
Ceramics International,2021,47(11):15313-15318
|
CSCD被引
5
次
|
|
|
|
19.
陈鹏. 基于SLS/CIP工艺SiC陶瓷的制备及其性能.
材料工程,2019,47(3):87-93
|
CSCD被引
5
次
|
|
|
|
20.
Zhang K. Effects of fine grains and sintering additives on stereolithography additive manufactured Al_2O_3ceramic.
Ceramics International,2021,47(2):2303-2310
|
CSCD被引
5
次
|
|
|
|
|