Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane
单原子铂和氮化硼载体之间电子作用及其对丙烷脱氢反应催化性能的影响
查看参考文献30篇
文摘
The electronic metal-support interaction (EMSI) is one of most intriguing phenomena in heterogeneous catalysis. In this work, this subtle effect is clearly demonstrated by density functional theory (DFT) calculations of single Pt atom supported on vacancies in a boron nitride nanosheet. Moreover, the relation between the EMSI and the performance of Pt in propane direct dehydrogenation (PDH) is investigated in detail. The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions, such as boron and nitrogen vacancies (B_(vac) and N_(vac), respectively). Single Pt atom become positively and negatively charged on B_(vac) and N_(vac), respectively. Therefore, the electronic structure of Pt can be adjusted by rational deposition on the support. Moreover, Pt atoms in different charge states have been shown to have different catalytic abilities in PDH. The DFT calculations reveal that Pt atoms on B_(vac) (Pt-B_(vac)) have much higher reactivity towards reactant/product adsorption and C-H bond activation than Pt supported on N_(vac) (Pt-N_(vac)), with larger adsorption energy and lower barrier along the reaction pathway. However, the high reactivity of Pt-B_(vac) also hinders propene desorption, which could lead to unwanted deep dehydrogenation. Therefore, the results obtained herein suggest that a balanced reactivity for C-H activation in propane and propene desorption is required to achieve optimum yields. Based on this descriptor, a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH. Furthermore, the deep dehydrogenation of the formed propene is significantly suppressed, owing to the large barrier on Pt-N_(vac). The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction.
其他语种文摘
随着世界范围内大规模页岩气资源的发现和开采,如何进一步高效转化页岩气生成高附加值化学品是提升页岩气资源利用率和增加经济收益的关键.页岩气主要的组分是甲烷,同时还包含10%左右的乙烷和丙烷.另一方面,由于当前丙烯的市场价格远远超过丙烷,因此丙烷到丙烯的催化转化是高效利用我国页岩气资源的有效途径.丙烷直接脱氢制丙烯是工业上常见的催化转化丙烷的方法.丙烷直接脱氢面临的主要问题是反应中积碳覆盖活性位导致催化剂失活.最近,单原子催化剂在烷烃碳氢键活化过程中表现出优异的催化性能,尤其在抑制深度反应、减少积碳方面有突出效果.然而,单原子催化剂在苛刻反应条件下容易团聚失活,因此选择合适的载体材料是单原子催化剂设计的关键.本文利用氮化硼作为单原子铂催化剂载体,考察了其在丙烷直接脱氢反应中的催化性能.第一性原理计算表明,氮化硼载体上硼和氮空穴是单原子铂稳定的锚定点,同时单原子铂在硼和氮空穴上表现出截然相反的电子结构.电荷分析表明,在硼和氮空穴位上的单原子铂分别失去0.71 e和得到1.06 e个电荷. PDOS分析表明,在硼空穴上单原子铂在费米能级之上有更多的空轨道,有利于得到电子.通过密度泛函理论计算构建了从丙烷到丙烯的完整反应路径.计算结果表明,负载在硼空穴上的单原子铂比在氮空穴上的具有更好的碳氢键活化能力.在硼空穴和氮空穴上第一个碳氢键断裂能垒分别是0.64和0.82电子伏特,第二个碳氢键断裂能垒分别是0.26和1.10电子伏特.计算还详细分析了产物脱附过程,结果表明氢气先于丙烯脱附的路径能垒更小.同时丙烯脱附能垒已经接近或者超过丙烷碳氢键活化能垒.因此,对于丙烷直接脱氢反应,催化剂要兼顾丙烷碳氢键活化和产物脱附两个方面.虽然负载在硼空穴上的单原子铂催化剂有着优异的丙烷碳氢键活化能力,但产物丙烯由于强相互作用而难以脱附.另一方面,负载在氮空穴上的单原子铂对于碳氢键活化和产物脱附具有比较均衡的反应活性.综上所述,氮化硼载体和单原子铂催化剂之间的电子结构作用对丙烷直接脱氢反应的催化性能有着重要影响.负载在硼和氮空穴的单原子铂表现出截然相反的电子结构,电子结构差异导致不同的催化性能.基于计算结果,负载在氮空穴上的铂单原子具有优异的丙烷直接脱氢催化性能.本工作为进一步加深理解单原子催化中载体的作用提供了理论依据.
来源
催化学报
,2019,40(6):819-827 【核心库】
DOI
10.1016/S1872-2067(18)63196-1
关键词
Propane
;
Direct dehydrogenation
;
Platinum
;
Boron nitride
;
Single atom catalysis
;
Density functional theory
;
Electronic metel-support interaction
地址
1.
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Liaoning, Shenyang, 110034
2.
Institute of Metal Research, Chinese Academy of Sciences, Liaoning, Shenyang, 110016
3.
China University of Petroleum(Beijing), State Key Laboratory of Heavy Oil Processing, Beijing, 102249
语种
英文
文献类型
研究性论文
ISSN
0253-9837
学科
化学工业
基金
the Startup Foundation for Doctors of Shenyang Normal University
;
国家自然科学基金
;
辽宁省自然科学基金
;
the Fundamental Research Funds for Colleges and Universities in Liaoning Province
文献收藏号
CSCD:6482860
参考文献 共
30
共2页
1.
Baltrusaitis J.
Catal. Sci. Technol,2014,4:2397-2411
CSCD被引
4
次
2.
Armor J N.
Catal. Today,2014,236:171-181
CSCD被引
4
次
3.
Zou C.
Petroleum Exploration and Development (in Chinese),2010,37:641-653
CSCD被引
97
次
4.
Sattler J J H B.
Chem. Rev,2014,114:10613-10653
CSCD被引
137
次
5.
Carrero C A.
ACS Catal,2014,4:3357-3380
CSCD被引
25
次
6.
Yang X F.
Acc. Chem. Res,2013,46:1740-1748
CSCD被引
370
次
7.
Liang S.
Chem Cat Chem,2015,7:2559-2567
CSCD被引
26
次
8.
Guo X.
Science,2014,344:616-619
CSCD被引
147
次
9.
Hu B.
J. Catal,2015,322:24-37
CSCD被引
19
次
10.
Hu B.
ACS Catal,2015,5:3494-3503
CSCD被引
15
次
11.
Schweitzer N M.
ACS Catal,2014,4:1091-1098
CSCD被引
21
次
12.
Sun X.
J. Phys. Chem. C,2018,122:1570-1576
CSCD被引
4
次
13.
Liu X.
RSC Adv,2015,5:10452-10459
CSCD被引
3
次
14.
Zhu W.
Nat. Commun,2017,8:15291
CSCD被引
17
次
15.
Lin S.
Appl. Surf. Sci,2014,320:237-243
CSCD被引
1
次
16.
Lin S.
Phys. Chem. Chem. Phys,2015,17:888-895
CSCD被引
2
次
17.
Huang C.
Comput. Theor. Chem,2013,1011:5-10
CSCD被引
2
次
18.
Lin S.
J. Phys. Chem. C,2013,117:17319-17326
CSCD被引
15
次
19.
Kresse G.
Phys. Rev. B,1996,54:11169-11186
CSCD被引
3889
次
20.
Kresse G.
Comp. Mater. Sci,1996,6:15-50
CSCD被引
2209
次