电活性生物膜:形成、表征及应用
Electrochemically active biofilms: formation, characterization and application
查看参考文献64篇
文摘
|
电活性生物膜(Electrochemically active biofilms, EABs)是一类能够直接与胞外固态载体(铁氧化物、腐殖质及电极等)进行电子交换的生物膜.EABs的电子传递特性,赋予了它在环境、能源和化工等领域的广泛应用前景,已成为当前国际研究热点.本文以革兰氏染色法为依据,分别介绍了腐败希瓦氏菌(Sewanella putrefciens) 、硫还原地杆菌(Geobacter sulfurreducens)和丁酸梭菌(Clostridium butyricum EG3)为代表的阴性和阳性电活性微生物;在普通生物膜的形成基础上,讨论了EABs的两种主要培养方法;分别从EABs输出电子与接受电子的角度,详细论述了电活性微生物与胞外载体的电子传递机制;重点阐述了利用电化学、光谱学、电子显微镜、分子生态学等多技术手段表征单个电活性微生物和整个EABs的形态、结构,以及所揭示的胞外电子传递机制和相关影响因子;对EABs在电能输出、污染物治理、有价品合成等方面应用作了详细介绍.最后,建议对EABs的研究建立一个统一、标准的表征方法,同时应重点研究EABs接受电子的传递机制.对这些机理的深入了解,可使得EABs在污染物治理以及有机物的电合成等方面应用早日实现规模化、产业化生产. |
其他语种文摘
|
Microorganisms commonly form biofilms in order to strengthen their functions or survival in harsh environments. Electrochemically active biofilms(EABs) are special because they can donate electrons to, or accept electrons from, electrodes or natural analogs of electrodes such as Fe(III) oxides and humid acids. Numerous promising applications can be developed based on EABs, including bio-remediation of polluted soils or water, electricity generation from waste materials, biosensors to monitor microbial metabolic activities, and biosynthesis of desirable products. This paper is organized as follows. Section 1 describes some Gram negative and Gram positive electroactive microbes, including Shewanella putrefaciens, Geobacter sulfurreducens and Clostridium butyricum EG3. Section 2 presents two principal approaches for EABs cultivation after describing the development of common biofilms that are not electroactive. Section 3 introduces the major electron-exchange mechanism, including how microorganisms get electrons from electrodes and how electrons from the decomposition of organic materials by microorganisms are conducted to electrode. Section 4 introduces electrochemical, spectroscopic, microscopic and molecular ecological techniques used to characterize the morphology and structure of a single microorganism or EABs to reveal the electron transfer mechanisms and influencing factors. Applications of EABs, which include energy production, wastewater and soil pollution remediation, and chemicals electrosynthesis, are introduced. Finally, we conclude that a uniform and standard method should be built up, more efforts should be put in revealing the electron-exchange mechanism between the microorganisms and the supporters, especially about how EABs accept electrons from electrodes. More understanding of the electron-transfer mechanism and its controlling factor, shall further promote the industrial application of EABs. |
来源
|
应用与环境生物学报
,2014,20(6):1096-1103 【核心库】
|
DOI
|
10.3724/sp.j.1145.2014.03028
|
关键词
|
电活性生物膜
;
电活性微生物
;
胞外电子传递
;
生物电化学系统
;
微生物电合成
|
地址
|
1.
中国科学院广州地球化学研究所, 广州, 510640
2.
湖南农业大学生物科学技术学院, 长沙, 410128
3.
广东省生态环境与土壤研究所, 广州, 510650
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1006-687X |
学科
|
化学;微生物学 |
基金
|
国家自然科学基金
;
广东省科学院优秀青年科技人才基金
;
广东省科技攻关项目
|
文献收藏号
|
CSCD:5326002
|
参考文献 共
64
共4页
|
1.
Liu H. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.
Environ Sci Technol,2004,38(7):2281-2285
|
CSCD被引
138
次
|
|
|
|
2.
O'Toole G. Biofilm formation as microbial development.
Annu Rev Microbiol,2000,54:49-79
|
CSCD被引
99
次
|
|
|
|
3.
Logan B E. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.
Environ Sci Technol,2008,42(23):8630-8640
|
CSCD被引
63
次
|
|
|
|
4.
Cao X. A new method for water desalination using microbial desalination cells.
Environ Sci Technol,2009,43(18):7148-7152
|
CSCD被引
44
次
|
|
|
|
5.
Strik Dpbtb. Microbial solar cells: applying photosynthetic and electrochemically active organisms.
Trends Biotechnol,2011,29(1):41-49
|
CSCD被引
9
次
|
|
|
|
6.
Torres C S L. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
Environ Sci Technol,2009,43(24):9519-9524
|
CSCD被引
12
次
|
|
|
|
7.
Parot S. Forming electrochemically active biofilms from garden compost under chronoamperometry.
Bioresour Technol,2008,99(11):4809-4816
|
CSCD被引
4
次
|
|
|
|
8.
Cheng S H. Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders(Nafion and PTFE) in single chamber microbial fuel cells.
Environ Sci Technol,2006,40(1):364-369
|
CSCD被引
130
次
|
|
|
|
9.
肖勇. 电化学活性微生物的分离与鉴定.
化学进展,2013,25(10):1771-1780
|
CSCD被引
9
次
|
|
|
|
10.
Kim B H. Direct electrode reaction of Fe(lll)-reducing bacterium, Shewanella putrefaciens.
J Microbiol Biotechnol,1999,9(2):127-131
|
CSCD被引
30
次
|
|
|
|
11.
Bond D R. Electricity production by Geobacter sulfurreducens attached to electrodes.
Appl Environ Microbiol,2003,69(3):1548-1555
|
CSCD被引
137
次
|
|
|
|
12.
Ghaudhuri S K. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
Nat Biotechnol,2003,21(10):1229-1232
|
CSCD被引
126
次
|
|
|
|
13.
Pham C A. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell.
FEMS Microbiol Lett,2003,223(1):129-134
|
CSCD被引
39
次
|
|
|
|
14.
Holmes D E. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.
Appl Environ Microbiol,2004,70(10):6023-6030
|
CSCD被引
29
次
|
|
|
|
15.
Zhang L. Microbial fuel cell based on Klebsiella pneumoniae biofilm.
Electrochem Commun,2008,10(10):1641-1643
|
CSCD被引
22
次
|
|
|
|
16.
Park H S. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell.
Anaerobe,2001,7(6):297-306
|
CSCD被引
51
次
|
|
|
|
17.
Marshall C W. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica.
Energy Envrion Sci,2009,2(6):699-705
|
CSCD被引
10
次
|
|
|
|
18.
Nimje V R. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell.
J Power Sourc,2009,190(2):258-263
|
CSCD被引
14
次
|
|
|
|
19.
Liu M. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells.
Bioresour Technol,2010,101(6):1807-1811
|
CSCD被引
14
次
|
|
|
|
20.
Luo J. A new electrochemically active bacterium phylogenetically related to Tolumonas osonensis and power performance in MFCs.
Bioresour Technol,2013,139:141-148
|
CSCD被引
15
次
|
|
|
|
|