帮助 关于我们

返回检索结果

基于径向基函数网格变形的高速列车头型优化
AERODYNAMIC OPTIMIZATION OF HIGH-SPEED TRAIN BASED ON RBF MESH DEFORMATION

查看参考文献14篇

文摘 基于局部型函数三维参数化方法、改进的蚁群算法和改进的克里金(Kriging)代理模型,开展了列车头型的三维气动减阻优化设计研究。为了避免复杂几何外形大变形情况下千万量级网格的重复生成,提高高速列车头型优化设计的效率,引入了缩减控制点的径向基函数网格变形技术。优化结果表明:径向基函数网格变形技术在不降低网格质量的情况下可以有效缩短网格变形的时间消耗,能够用于复杂几何外形的气动优化设计;在给定的设计空间内,控制鼻锥外形的6个关键设计参数对列车气动阻力的影响呈单调递增关系;优化后,在满足约束条件的情况下,简化外形列车的整车气动阻力减小5。41%,头尾车减阻效果明显,中间车气动阻力基本不变。
其他语种文摘 An aerodynamic drag reduction optimization design study of high-speed train head is carried out based on the three-dimensional parametric approach of local shape function, improved ant colony algorithm and improved Kriging surrogate model. To avoid repeated generation of ten millions of meshes in the case of large deformation with complex geometry and improve the optimization efficiency of high-speed train head, we introduce mesh deformation techniques of the reduced control points based on radial basis functions (RBF). The optimization results show that: RBF mesh deformation method could largely shorten the time-consuming of mesh deformation without reducing the quality of meshes, and can be used for aerodynamic optimization design of complex geometry. Under the design space given in this article, the six key design parameters that control the nose shape have e ects on the aerodynamic drag of the train with a kind of monotonically increasing relationship. After optimization under the constraints, the total aerodynamic drag of the simplify shape is reduced by 5.68%. The aerodynamic drag of leading and trailing cars reduced a lot, while the aerodynamic drag of middle car changes little.
来源 力学学报 ,2013,45(6):982-986 【核心库】
DOI 10.6052/0459-1879-13-111
关键词 网格变形 ; 蚁群算法 ; 气动阻力 ; 径向基函数 ; 高速列车
地址

中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 铁路运输
基金 国家973计划 ;  “十一五” 国家科技支撑计划
文献收藏号 CSCD:4995729

参考文献 共 14 共1页

1.  Joseph A S. Aerodynamics of High-speed Trains. Annual Reviews Fluid Mechanics,2001,33(1):371-414 CSCD被引 79    
2.  Yang G W. Aerodynamic design for China new high-speed trains. Science China Technological Sciences,2012,55(7):1923-1928 CSCD被引 14    
3.  姚拴宝. 高速列车气动阻力分布特性研究. 铁道学报,2012,34(7):18-23 CSCD被引 49    
4.  田红旗. 列车空气动力学,2007:160-161 CSCD被引 10    
5.  Cui K. Shape optimization of high-speed train with the speed of 500 kph. Lecture Notes in Electrical Engineering Proceedings of the 1st International Workshop on High-Speed and Intercity Railways, Vol.2. Tiergartenstrasse 17,Lnee 148,2012:187-197 CSCD被引 3    
6.  Yao S B. Three-dimensional optimization design of high-speed train nose based on GA-GRNN. Science China Technological Sciences,2012,55(11):3118-3130 CSCD被引 12    
7.  Yao S B. Multi-objective optimization of the streamlined head of high-speed trains based on the Kriging model. Science China Technological Sciences,2012,55(12):3494-3508 CSCD被引 12    
8.  Sun Z X. Optimization of the head shape of the CRH3 high speed train. Science China Technological Sciences,2010,12:3356-3364 CSCD被引 25    
9.  Rendall T C S. Reduced surface point selection options for efficient mesh deformation using radial basis functions. Journal of Computational Physics,2010,229:2810-2820 CSCD被引 27    
10.  Rendall T C S. Unified fluid-structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering,2008,75(10):1519-1559 CSCD被引 33    
11.  Rendall T C S. Efficient mesh motion using radial basis functions with data reduction algorithms. Journal of Computational Physics,2009,228(17):6231-6249 CSCD被引 49    
12.  林言中. 径向基函数插值方法在动网格技术中的应用. 计算物理,2012,29(2):191-197 CSCD被引 14    
13.  Karaboga N. Designing digital IIR filters using ant colony optimization algorithm. Engineering Applications of Artificial Intelligence,2004,17:301-309 CSCD被引 14    
14.  陈烨. 变尺度混沌蚁群优化算法. 计算机工程与应用,2007,43(3):68-70 CSCD被引 17    
引证文献 13

1 胡会朋 基于背景网格簇的动网格生成方法 航空学报,2014,35(11):2921-2931
CSCD被引 2

2 于梦阁 横风下高速列车流线型头型多目标气动优化设计 机械工程学报,2014,50(24):122-129
CSCD被引 14

显示所有13篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号