新生代气候变冷机制研究进展
The mechanism of Cenozoic cooling:A review of research progress
查看参考文献131篇
文摘
|
深海氧同位素记录揭示新生代以来全球气候呈整体变冷趋势,南北两极先后发育冰盖,地球由温室气候变为冰室气候,但是其变冷机制仍不明确。大气CO_2浓度降低和大洋环流模式改变均被认为与新生代气候变冷密切相关,但目前对两者的作用还未达成统一的认识,由此存在各种假说,如BLAG假说、高原隆升-风化假说、构造隆升-碳埋藏假说、火山铁肥效应和岛弧隆升-风化假说及海道开合假说等,用以解释新生代全球变冷。围绕新生代气候变冷机制方面的争论,评述了过去近几十年来相关研究的进展和存在的问题,讨论了不同机制对新生代气候变化的影响,并提出未来需要加强的研究重点:建立准确的新生代大气CO_2浓度演变序列、建立更加准确的地球内部排气和青藏高原隆升及海道开合时刻表、建立完善的风化指标体系、加强火山作用及其大洋生物地球化学效应的研究。 |
其他语种文摘
|
Deep-sea oxygen isotope records reveal that the earth's climate has experienced times of gradual global coolings and ice sheets expansions at Antarctic and north hemisphere one after another. The mechanism for Cenozoic climate change from greenhouse to icehouse,however, still remain unclear. Various hypotheses related to declining atmospheric CO_2 concentration and models for changes in ocean circulation have been proposed to explain the Cenozoic global cooling, such as the BLAG hypothesis, plateau uplift-weathering hypothesis,uplift-organic carbon burial hypothesis, volcanic iron fertilization effect, island arc uplift-weathering hypothesis and passage opening and closing hypothesis. Base on the debates on the mechanism of Cenozoic climate cooling, this study reviewed the progress and defects of related researches in recent decades, and put forward some key points for future study, such as, establishing accurate evolution sequence of Cenozoic atmospheric CO_2 concentration, establishing a more accurate timetable of earth's outgassing, Tibet plateau uplifting and passage opening and closing, establishing a solid weathering index system, reinforcing the study of volcanism and its oceanic biogeochemical effects on carbon cycles. |
来源
|
海洋地质与第四纪地质
,2019,39(5):71-86 【核心库】
|
DOI
|
10.16562/j.cnki.0256-1492.2019062601
|
关键词
|
新生代气候变冷
;
碳循环
;
青藏高原隆升
;
硅酸盐风化
;
火山铁肥效应
|
地址
|
1.
中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 青岛, 266071
2.
中国科学院大学, 北京, 100049
3.
青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 青岛, 266061
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0256-1492 |
学科
|
海洋学 |
基金
|
国家自然科学基金优秀青年科学基金
|
文献收藏号
|
CSCD:6620322
|
参考文献 共
131
共7页
|
1.
Zachos J. Trends, rhythms, and aberrations in global climate 65 Ma to present.
Science,2001,292(5517):686-693
|
CSCD被引
650
次
|
|
|
|
2.
Miao Y F. What controlled mid-late miocene long-term aridification in central Asia?-Global cooling or Tibetan Plateau uplift: a review.
Earth-Science Reviews,2012,112(3/4):155-172
|
CSCD被引
63
次
|
|
|
|
3.
Wan S M. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Seasince 20 Ma.
Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254(3/4):561-582
|
CSCD被引
117
次
|
|
|
|
4.
Lowenstein T K. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions.
Science,2001,294(5544):1086-1088
|
CSCD被引
53
次
|
|
|
|
5.
Higgins J A. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids.
Earth and Planetary Science Letters,2012,357/358:386-396
|
CSCD被引
8
次
|
|
|
|
6.
Higgins J A. The Mg isotopic composition of Cenozoic seawater-evidence for a link between Mg-clays, seawater Mg/Ca, and climate.
Earth and Planetary Science Letters,2015,416:73-81
|
CSCD被引
23
次
|
|
|
|
7.
Copeland P. The when and where of the growth of the himalaya and the Tibetan Plateau.
Tectonic Uplift and Climate Change,1997:20
|
CSCD被引
2
次
|
|
|
|
8.
Keigwin L. Isotopic paleoceanography of the Caribbean and East pacific: role of panama uplift in late neogene time.
Science,1982,217(4557):350-353
|
CSCD被引
9
次
|
|
|
|
9.
Kennett J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography.
Journal of Geophysical Research,1977,82(27):3843-3860
|
CSCD被引
28
次
|
|
|
|
10.
Foster G L. Future climate forcing potentially without precedent in the last 420 million years.
Nature Communications,2017,8:14845
|
CSCD被引
54
次
|
|
|
|
11.
Ruddiman W F. Plateau uplift and climatic change.
Scientific American,1991,264:66-75
|
CSCD被引
6
次
|
|
|
|
12.
Gutjahr M. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum.
Nature,2017,548(7669):573-577
|
CSCD被引
22
次
|
|
|
|
13.
Zachos J C. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean.
Geology,1992,20(6):569-573
|
CSCD被引
6
次
|
|
|
|
14.
Ehrmann W U. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time.
Palaeogeography, Palaeoclimatology, Palaeoecology,1992,93(1/2):85-112
|
CSCD被引
6
次
|
|
|
|
15.
Francis J E. Evidence from fossil plants for Antarctic palaeoclimates over the past 100 million years.
Terra Antartica Reports,1999,3:43-52
|
CSCD被引
1
次
|
|
|
|
16.
Super J R. North Atlantic temperature and pCO_2 coupling in the early-middle Miocene.
Geology,2018,46(6):519-522
|
CSCD被引
4
次
|
|
|
|
17.
Kasbohm J. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum.
Science Advances,2018,4(9):eaat8223
|
CSCD被引
11
次
|
|
|
|
18.
Shackleton N J. The evolution of oceanic oxygen-isotope variability in the North Atlantic over the past three million years.
Philosophical Transactions of the Royal Society B: Biological Sciences,1988,318(1191):679-688
|
CSCD被引
1
次
|
|
|
|
19.
Ruddiman W F.
Earth's Climate: Past and Future. 2nd ed,2008:40-79
|
CSCD被引
1
次
|
|
|
|
20.
Beerling D J. Convergent cenozoic CO_2 history.
Nature Geoscience,2011,4(7):418-420
|
CSCD被引
55
次
|
|
|
|
|