帮助 关于我们

返回检索结果

一米真空太阳望远镜Level 1级图像选帧的GPU实现
A method of Level 1 frames-selection based on GPU for new vacuum solar telescope

查看参考文献12篇

施正 1   向永源 2   邓辉 1   季凯帆 1   卫守林 1 *  
文摘 抚仙湖一米真空太阳望远镜Level 1数据是利用图像选帧位移叠加技术获得的, 目前Level 1处理的时间约20 s, 大约是图像采集时间的1.7倍. 为了达到减少其所需时间的目的, 本文采用GPU技术来实现选帧流程, 包括斑点干涉选帧和互相关图像位移叠加. 在CUDA环境下,实现了利用GPU处理大量傅里叶变换和图像矩阵的并行四则运算等功能. 在我们的实验环境下, 对100帧图像的处理只需要0.6 s. 同时对整个流程中各个模块的运行时间也进行了详细的测量、分析和讨论.
其他语种文摘 The sun high resolution imaging observation is the most important way of New Vacuum Solar Telescope (NVST) located in Fuxian Lake of Yunnan. This paper mainly describes the method of the Level 1 data processing of NVST. Currently, the times used by NVST to calculate the 100 images is about 20 s, which is almost 1.7 times of 100 image acquisition time of 12 s. It can’t meet the demand of real time processing. In this situation, we have decided to use GPU to process the data. Because the GPU has multi-threading parallelism and a superiority in image processing. We implemented the algorithm by GPU to short the processing time to meet the demand without changing the original algorithm. Thus, it ensures the accuracy of the original operation without affecting the subsequent operation. The experiment includes two main parts, frames-selection method and shift-and-add method. Frames-selection uses speckle interferometry (SI). It selects part of the images with better quality and then shifts-and-adds them. Not all of the image data are required. Usually we only concerned with the necessary part. So in the election process, we only calculated the frequency and the bandwidth. It will highly improve the accuracy of the selected frame. The Fourier transform spent the most time in this experiment. It runs three times in the frame selection and processes second times in the shift-and add. This part of the length of time consuming operation largely determines the efficiency of the program. The CUDA provides the standard library functions, which called CUBLAS and greatly improve the operating efficiency of the program. The library functions CUBLAS provides matrix operations. In this study, most of the matrix operations referenced standard library functions to achieve a large number of image matrix of the parallel arithmetic and other functions. The rest of them used a GPU multi-threading technology. In our experiments, 100 images calibration only takes 0.25 s, GPU runtime also only 0.6 s, the processing time of a single frame is only 4.7 ms. The time of processing image exposure spends only 12 ms. Therefore, it means that in the next frame of the image exposure time, the processing steps of the previous frame image exposure can be completed synchronously. In the current conditions, it meet the demand of real-time processing.
来源 科学通报 ,2015,60(15):1408-1413 【核心库】
DOI 10.1360/N972015-00032
关键词 NVST ; GPU ; 互相关 ; 斑点干涉 ; 图像重建选帧
地址

1. 昆明理工大学, 云南省计算机技术应用重点实验室, 昆明, 650500  

2. 中国科学院云南天文台, 昆明, 650001

语种 中文
文献类型 研究性论文
ISSN 0023-074X
基金 国家自然科学基金
文献收藏号 CSCD:5445330

参考文献 共 12 共1页

1.  Liu Z. New vacuum solar telescope and observations with high resolution. Res Astron Astrophys,2014,14:705-718 CSCD被引 78    
2.  杨忠良. 扩展目标幸运成像技术的理论和实验研究. 激光与光电子学进展,2010,47:51-56 CSCD被引 3    
3.  Law N M. Lucky imaging:High angular resolution imaging in the visible from the ground. Astron Astrophys,2006,446:739-745 CSCD被引 9    
4.  霍卓玺. 由斑点图重建天文图像的方法. 天文学进展,2010,28:72-92 CSCD被引 2    
5.  梁波. 太阳深积分磁场观测中异常结构的改正. 科学通报,2014,59:3603-3608 CSCD被引 1    
6.  Shen Y B. New real-time correlation solar observing system based on GPU for acquiring the deep-integration magnetogram. New Astron,2013,25:32-37 CSCD被引 3    
7.  Cao W. Scientific instrumentation for the 1.6 m new solar telescope in big bear. Astro Nachr,2010,331:636-639 CSCD被引 25    
8.  杨潇. GPU计算在太阳物理中的应用. 科研信息化技术与应用,2012,3:69-76 CSCD被引 1    
9.  Owens J D. GPU computing. Proc IEEE,2008,96:879-899 CSCD被引 77    
10.  卢风顺. CPU/GPU协同并行计算研究综述. 计算机科学,2011,38:5-9 CSCD被引 40    
11.  刘长玉. 太阳色球图像的选帧处理. 天文研究与技术,2014,11:140-144 CSCD被引 3    
12.  陈洁. 太阳磁场观测中相关位移叠加算法的比较. 天文研究与技术,2013,10:201-206 CSCD被引 3    
引证文献 3

1 张能维 Hα全日面云污染实时识别和修复系统 天文研究与技术,2016,13(2):242-249
CSCD被引 2

2 方兵 一种基于MPI +CUDA的高性能天文数据分发方法 天文研究与技术,2017,14(4):481-487
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号