(Ti_35Zr_(40)Nb_(25))_(100-x)Al_x(x=0,5,10,15,20)高熵合金相组成、组织和力学性能
Phases,microstructure and mechanical properties of (Ti_(35)Zr_(40)Nb_(25))_(100-x)Al_x(x= 0,5,10,15,20) high entropy alloys
查看参考文献34篇
文摘
|
难熔高熵合金主要由难熔金属元素组成,其熔点通常高于1800 ℃,且具有高热稳定性和优异抗高温软化能力,在高温领域具有巨大的应用潜力,但是高密度导致的比强度不足和室温脆性等缺点成为其应用的阻碍。本文设计并制备了系列新型非等原子比(Ti_35Zr_(40)Nb_(25))_(100-x)Al_x (x=0, 5, 10, 15, 20)轻质难熔高熵合金,研究了Al含量对相组成、组织和力学性能的影响。X射线衍射分析表明,随着Al含量的增加,合金的相结构由无序BCC转变为有序B2。五种铸态合金具有类似的组织形貌,铸锭边缘存在一个沿着冷却方向生长的细长枝晶区域,铸锭中心区域则主要为等轴枝晶。能谱分析表明Nb元素在枝晶干偏聚,Al和Zr元素则富集在枝晶间,这是由Nb的高熔点以及Al和Zr的强键合共同决定的。室温压缩实验发现Al含量的增加导致合金的屈服强度和抗压强度均逐渐提升,但没有降低室温塑性,所有合金的室温压缩断裂应变均超过50%。 |
其他语种文摘
|
The refractory high entropy alloys (HEAs) based on refractory elements are developed for potential applications in high temperature areas, since these alloys always have melting temperature higher than 1800 ℃, high temperature structural stability and high resistance to heat softening. However, large density induced lower specific strength and room temperature brittleness hinder their application. In this study, the light-weight non-equimolar(Ti_35Zr_(40)Nb_(25))_(100-x)Al_x(x=0, 5, 10, 15, 20) HEAs were designed and fabricated, then the effect of Al content on the phases, microstructure and mechanical properties were investigated. X-ray diffraction results indicate that the phase changes from the disorder BCC to ordered B2 of other alloys with the increase of Al content. Five alloys have similar phase morphology. Lots of long and slender dendrites grow along the cooling direction at the edge of the ingots, while equiaxed dendrites form at the center of the samples. Energy dispersive X-ray analysis imply the enrichment of Nb in dendritic regions, while Al and Zr segregate in the interdendritic regions. This can be attributed to the highest melting temperature of Nb and stronger bonding between Al and Zr. Room temperature tests reveal that the increase of Al content leads to the increase of both the yield stress and compression stress, but has less influence on the room temperature ductility, the fracture strain of all alloys exceeds 50%. |
来源
|
材料工程
,2024,52(1):108-117 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000509
|
关键词
|
高熵合金
;
相组成
;
组织
;
元素编析
;
力学性能
;
固溶强化
|
地址
|
1.
北京科技大学材料科学与工程学院, 北京, 100083
2.
北京科技大学, 新金属材料国家重点实验室, 北京, 100083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
;
快速扶持项目
|
文献收藏号
|
CSCD:7652195
|
参考文献 共
34
共2页
|
1.
Zhang Y. Microstructures and properties of high-entropy alloys.
Progress in Materials Science,2014,61:1-93
|
CSCD被引
629
次
|
|
|
|
2.
Yan X H. Properties and processing technologies of high-entropy alloys.
Materials Futures,2022,1(2):022002
|
CSCD被引
3
次
|
|
|
|
3.
Tsai K Y. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high entropy alloys.
Acta Materialia,2013,61(13):4887-4897
|
CSCD被引
165
次
|
|
|
|
4.
He J Y. A precipitation hardened high-entropy alloy with outstanding tensile properties.
Acta Materialia,2016,102:187-196
|
CSCD被引
235
次
|
|
|
|
5.
Huang D. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNbxNi highentropy alloys.
Corrosion Science,2019,158:108088
|
CSCD被引
11
次
|
|
|
|
6.
Ouyang D. Oxidation behavior of the Ti_38V_(15)Nb_(23)Hf_(24) refractory high-entropy alloy at elevated tem-peratures.
Corrosion Science,2022,198:110153
|
CSCD被引
3
次
|
|
|
|
7.
Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications.
Science,2014,345(6201):1153-1158
|
CSCD被引
515
次
|
|
|
|
8.
丁一. 1000 ~1400 ℃ 下NbMoTaWV难熔高熵合金的氧化行为.
材料工程,2023,51(5):94-103
|
CSCD被引
5
次
|
|
|
|
9.
吕昭平. 高熵合金的变形行为及强韧化.
金属学报,2018,54(11):1553-1566
|
CSCD被引
57
次
|
|
|
|
10.
张聪. 高通量计算与机器学习驱动高熵合金的研究进展.
材料工程,2023,51(3):1-16
|
CSCD被引
9
次
|
|
|
|
11.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20) refractory high entropy alloys.
Intermetallics,2011,19(5):698-706
|
CSCD被引
295
次
|
|
|
|
12.
Senkov O N. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy.
Journal of Materials Science,2012,47(9):4062-4074
|
CSCD被引
82
次
|
|
|
|
13.
Senkov O N. Microstructure and properties of a refractory NbCrMo_(0.5)Ta_(0.5)TiZr alloy.
Materials Science and Engineering: A,2011,529:311-320
|
CSCD被引
47
次
|
|
|
|
14.
Senkov O N. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo_(0.5)NbTa_(0.5)TiZr.
Materials & Design,2018,139:498-511
|
CSCD被引
49
次
|
|
|
|
15.
Lin C M. Effect of Al addition on mechanical properties and microstructure of refractory AlxHf-NbTaTiZr alloys.
Journal of Alloys and Compounds,2015,624:100-107
|
CSCD被引
31
次
|
|
|
|
16.
Senkov O N. Development and exploration of refractory high entropy alloys: a review.
Journal of Materials Research,2018,33(19):3092-3128
|
CSCD被引
85
次
|
|
|
|
17.
Fazakas E. Experimental and theoretical study of Ti_(20)Zr_(20)Hf_(20)Nb_(20)X_(20) (X = V or Cr) refractory high-entropy alloys.
International Journal of Refractory Metals and Hard Materials,2014,47:131-138
|
CSCD被引
25
次
|
|
|
|
18.
Xie X C. Research Progress of Refractory High Entropy Alloys:A Review.
Chinese Journal of Mechanical Engineering,2022,35(6):142
|
CSCD被引
7
次
|
|
|
|
19.
姜萱. 难熔高熵合金制备及性能研究进展.
材料工程,2022,50(3):33-42
|
CSCD被引
17
次
|
|
|
|
20.
Wu Y D. A refractory Hf_(25)Nb_(25)Ti_(25)Zr_(25) high-entropy alloy with excellent structural stability and tensile properties.
Materials Letters,2014,130:277-280
|
CSCD被引
63
次
|
|
|
|
|