程控自主天文台网络的发展
Robotic Autonomous Observatory Network Review
查看参考文献59篇
文摘
|
网络技术的不断发展和望远镜远程控制技术的成熟让无人值守的程控自主天文台成为可能。把多个独立运行的程控自主天文台通过网络连接起来协同工作,就是程控自主天文台网络。程控自主天文台和概要式巡天在共同开启时域天文学并进而推动天文学跨越式发展的同时,也给研究方式和技术应用带来全新的挑战。回顾程控自主天文台网络的发展轨迹,总结实现的基本思路和逻辑结构,介绍科学应用,探讨随之而来的挑战,尝试分析在天文学上的发展前景和国内的发展战略。 |
其他语种文摘
|
Developments in telescopes, detectors and software have greatly enhanced our ability to make astronomical observations. Powerful astronomical observation is very sensitive to its working environment, requiring it to be quiet as much as possible. Rapid urbanization over the past century has impacted this environment such that astronomical observations now suffer from light, air and electromagnetic pollution. To obtain better observational data and generate more scientific discoveries, astronomical observatories are forced to migrate to remote places or even into space. As a result of the migration, and the global nature of astronomy, observatories and scientific data are widely distributed. Meanwhile, multiband astronomy and time-domain astronomy are becoming popular fields in astronomy in the 21st century, both of which are based on federation of multiband and multi-time scientific datasets. Robotic Autonomous Observatory (RAO) and RAO Network (RAON) provide a science driven and technique enabled way to address the above problem. With the development of information technology and computer science as well as electro-mechanics, the automation of astronomical observation is undergoing rapid development, and consequently long term unsupervised observation is made possible. This becomes what we call “Robotic Autonomous Observatory”. Following from this is the idea of connecting multiple robotic autonomous observatories via a robust computer network and making them interoperate. The connected system, namely “Robotic Autonomous Observatory Network”, will enable observation around the clock in respect to a given object or covering large areas on the sky repeatedly, and the completeness of observations in time and space domains could be largely guaranteed. Time domain astronomy and data intensive astronomy are being enabled by the advent of the new autonomous observation mode and synoptic sky surveys, which brings both new scientific opportunities and fresh challenges. This paper reviews the historical perspectives of robotic autonomous observatory network. Several ongoing global RAON projects with early efforts in China are described briefly. The 5-layer architecture of RAON is summarized following the concept of a data-driven system, i.e. data harvest system, data archive system, data processing system, management and scheduling system, and network and message exchange system. BOOTES (Burst Optical Observer and Transient Exploring System) is introduced as an example to provide a deeper understanding of the architecture. Scientific applications of RAON are summarized briefly. Technical challenges facing the RAON are classified in terms of autonomous observation, scheduling, and data mining. Finally, requirements and development strategies on RAON are discussed. |
来源
|
天文学进展
,2013,31(2):141-159 【核心库】
|
关键词
|
程控自主天文台
;
望远镜网络
;
自主观测
;
时域天文学
|
地址
|
1.
中国科学院国家天文台, 北京, 100012
2.
中国科学院云南天文台, 昆明, 650011
3.
昆明理工大学, 昆明, 650500
4.
北京工业大学, 北京, 100021
5.
华中师范大学, 武汉, 430079
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-8349 |
学科
|
天文学 |
基金
|
国家自然科学基金委员会-中国科学院“天文联合基金”
;
国家科技基础性工作专项
;
北京市科技新星计划项目
|
文献收藏号
|
CSCD:4849417
|
参考文献 共
59
共3页
|
1.
Bernardini E.
Science,2011,331:686
|
CSCD被引
1
次
|
|
|
|
2.
York D G.
Time Domain Research in Astronomy, White Paper for the 2009-2010 Decadal Survey Committee,2009
|
CSCD被引
1
次
|
|
|
|
3.
McNall J F.
AJ,1968,73:756
|
CSCD被引
1
次
|
|
|
|
4.
Genet R M.
International Amateur-Professional Photoelectric Photometry Communication,1986,25:1
|
CSCD被引
3
次
|
|
|
|
5.
Helmer L.
Vistas in Astronomy,1985,28:505
|
CSCD被引
1
次
|
|
|
|
6.
Genet R.
PASP,1987,99:660
|
CSCD被引
1
次
|
|
|
|
7.
Baliunas S.
International Amateur-Professional Photoelectric Photometry Communication,1985,22:47
|
CSCD被引
1
次
|
|
|
|
8.
Baruch J.
Astronomy & Geophysics,2007,48:427
|
CSCD被引
1
次
|
|
|
|
9.
Downey E C. The university of Iowa automated telescope facility.
ASP Conference Series. 101,1996:380
|
CSCD被引
1
次
|
|
|
|
10.
Steele A.
Proceedings of the SPIE. 4845,2002:13
|
CSCD被引
1
次
|
|
|
|
11.
Tsapras Y.
Astronomische Nachrichten,2009,330(1):4
|
CSCD被引
2
次
|
|
|
|
12.
Hessman F V.
Astron. Nachr,2006,327(8):763
|
CSCD被引
1
次
|
|
|
|
13.
Akerlof C W.
PASP,2003,115:132
|
CSCD被引
4
次
|
|
|
|
14.
Castro-Tirado A J.
A&AS,1999,138:583
|
CSCD被引
1
次
|
|
|
|
15.
Klotz A.
PASP,2008,120:1298
|
CSCD被引
1
次
|
|
|
|
16.
Kornilov V.
Experimental Astronomy,2012,33(1):173
|
CSCD被引
1
次
|
|
|
|
17.
Lipunov V.
Advances in Astronomy,2010,2010:349171
|
CSCD被引
1
次
|
|
|
|
18.
Hessman F.
Robotic telescope projects,2013
|
CSCD被引
1
次
|
|
|
|
19.
Bakos G A.
http://arxiv.org/pdf/1206.1391v1.pdf,2013
|
CSCD被引
1
次
|
|
|
|
20.
Konacki M.
American Astronomical Society, ESS meeting #2, 2011, #20.02, 2,2002
|
CSCD被引
1
次
|
|
|
|
|