钙离子浓度对两种蕨类植物光合作用的影响
Effects of calcium concentration on photosynthesis characteristics of two fern plants
查看参考文献24篇
文摘
|
石灰土是中国西南喀斯特地区分布最广的非地带性土壤,因对母岩化学性质的继承Ca~(2+)含量普遍较高,植物对土壤高钙环境的适应行为关系到植株对钙素的吸收、转运、积累等各个环节。为探讨土壤高Ca~(2+)环境对植物生理生态的影响和喀斯特喜钙植物的适生机制,以石灰土专属种柳叶蕨(Cyrtogonellum Ching)和酸性土专属种薄叶双盖蕨(Diplazium pinfaense Ching)2种蕨类植物为材料,分别用浓度梯度为4、30、100、200 mmol·L~(-1)的Ca~(2+)营养液进行沙培,利用LI-Cor 6400i便携式光合测定仪分别对不同Ca~(2+)浓度培养液培养的两种蕨类植物进行净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO_2浓度(Ci)等光合作用参数进行测定分析。结果表明:(1)柳叶蕨和薄叶双盖蕨的日Pn_((max))最高值对应的Ca~(2+)浓度分别为30 mmol·L~(-1)和4 mmol·L~(-1),柳叶蕨较薄叶双盖蕨具有更高的耐钙能力;(2)随Ca~(2+)浓度升高,柳叶蕨和薄叶双盖蕨的叶片净光合速率、蒸腾速率、气孔导度总体均呈降低趋势,但柳叶蕨降幅相对平缓,变化幅度较弱,柳叶蕨对环境钙浓度变化有相对较高的稳定性;(3)柳叶蕨和薄叶双盖蕨叶片Pn与Ci均呈显著负相关关系(P < 0.01),二者光合强度降低均受非气孔限制因素的影响,前者与叶肉细胞羧化能力减弱有关,后者可能还与高钙引起的叶片叶绿素含量降低有关;(4)酸性土专属种薄叶双盖蕨无法适应石灰土的高钙环境,可能与Ca~(2+)浓度升高到一定程度时其光合强度快速降低,水分代谢趋于紊乱,不能积极应对气温日变化等因素有关。 |
其他语种文摘
|
Calcareous soil is widely distributed in southwest China karst area of azonal soil, due to the inheritance of the chemical properties of parent rock, the Ca~(2+) content is generally higher. Adaptation of plants to soil environment of high calcium is related to calcium absorption, transport and accumulation of plant. Two fern plants, Cyrtogonellum Ching, exclusive kind of calcareous soil, and Diplazium pinfaense Ching, exclusive kind of acidic soil were choosed in order to study the influence of soil high Ca~(2+) environment on plant physiological ecology and optimal growth mechanism of karst calciphilous plants. Above two kinds of ferns as material, with the concentration gradient of 4, 30, 100, 200 mmol·L~(-1) respectively of Ca~(2+) nutrient solution for ShaPei, the photosynthesis parameters of net photosynthesis ratev (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO_2 concentration (Ci) and so on were measured by LI-Cor 6400i portable photosynthetic apparatus. The results showed that: (1) Pn (Max) peak for Ca~(2+) concentration corresponding to 30 mmol·L~(-1) and 4 mmol·L~(-1) respectively of Cyrtogonellum Ching and Diplazium pinfaense Ching, Cyrtogonellum Ching has a higher ability of resistance to calcium than Diplazium pinfaense Ching. (2) With the aggravation of calcium stress, the Pn, Tr, and Gs of these two ferns decreased, but the decrease trend of Cyrtogonellum Ching was smaller and feebler than that of Diplazium pinfaense Ching, which indicated Cyrtogonellum Ching had a higher relative stability under calcium stress. (3) Pn and Ci from leaves of Cyrtogonellum Ching and Diplazium pinfaense Ching were significantly negative correlation (P< 0.01), both of the photosynthetic intensity decrease are restricted by non stomatal factors, the former related to carboxylation ability decreases in mesophyll cells, the latter may be related to leaf chlorophyll content reduced caused by high calcium. (4) Diplazium pinfaense Ching, exclusive kind of acidic soil, could not adapt to the high calcium concentration in calcareous soil, may be associated with the Ca~(2+) concentration increases to a certain degree, the photosynthetic intensity decreases quickly, water metabolism disorder, insensitivity to the daily variation of air temperature and other factors. |
来源
|
生态环境学报
,2013,22(2):258-262 【核心库】
|
关键词
|
钙离子浓度
;
胁迫
;
蕨类植物
;
光合特征
|
地址
|
1.
贵州师范学院地理与旅游学院, 环境地球化学国家重点实验室, 贵州, 贵阳, 550018
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
3.
贵阳学院化学与材料工程学院, 贵州, 贵阳, 550005
4.
贵州师范学院地理与旅游学院, 贵州, 贵阳, 550018
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
植物学 |
基金
|
国家自然科学基金项目
;
贵州省项目
;
贵州省教育厅自然科学基金重点项目
;
贵州省高层次人才基金
;
贵州省优秀科技教育人才省长专项基金
|
文献收藏号
|
CSCD:4796920
|
参考文献 共
24
共2页
|
1.
Liang W J. The role of calcium in regulating photosynthesis and related physiologicalindexes of cucumber seedlings under low light intensity and suboptimal temperature stress.
Scientia Horticulturae,2009,123:34-38
|
CSCD被引
9
次
|
|
|
|
2.
李强. 干旱胁迫过程中外源钙对忍冬光合生理的影响.
生态环境学报,2010,19(10):2291-2296
|
CSCD被引
12
次
|
|
|
|
3.
李青云. 钠盐和钙盐胁迫对草莓光合作用的影响.
西北植物学报,2006,26(8):1713-1717
|
CSCD被引
22
次
|
|
|
|
4.
姬飞腾. 喀斯特地区植物钙含量特征与高钙适应方式分析.
植物生态学报,2009,33(5):926-935
|
CSCD被引
43
次
|
|
|
|
5.
White P J. Calcium in plants.
Annals of Botany,2003,92:487-511
|
CSCD被引
140
次
|
|
|
|
6.
Hirschi K D. The calcium conundrum, both versatile nutrient and specific signal.
Plant Physiology,2004,136:2438-2442
|
CSCD被引
53
次
|
|
|
|
7.
曹建华. 岩溶生态系统中的土壤.
地球科学进展,2003,18(1):37-44
|
CSCD被引
200
次
|
|
|
|
8.
谢丽萍. 喀斯特小流域植被-土壤系统钙的协变关系研究.
地球与环境,2007,35(1):26-32
|
CSCD被引
20
次
|
|
|
|
9.
安德艳. 铜仁地区植烟土壤类型及肥力分析.
贵州农业科学,2010,38(6):126-129
|
CSCD被引
3
次
|
|
|
|
10.
许大全. 光合作用气孔限制分析中的一些问题.
植物生理学通讯,1997,33(4):241-244
|
CSCD被引
549
次
|
|
|
|
11.
Marks C O. The ecological and functional correlates of nocturnal transpiration.
Tree Physiology,2007,27:577-584
|
CSCD被引
10
次
|
|
|
|
12.
Tuzet A. A coupled model of stomatal conductance, photosynthesis and transpiration.
Plant, Cell and Environment,2003,26:1097-1116
|
CSCD被引
56
次
|
|
|
|
13.
王建林. 光和CO_2作用下C_3和C_4作物气孔导度-光合速率耦合关系的差异.
华北农学报,2008,23(1):71-75
|
CSCD被引
3
次
|
|
|
|
14.
Miyashita K. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress.
Environmental and Experimental Botany,2005,53:205-214
|
CSCD被引
39
次
|
|
|
|
15.
廖岩. 三种红树植物对盐胁迫的生理适应.
生态学报,2007,27(6):2208-2214
|
CSCD被引
28
次
|
|
|
|
16.
White P J. The pathways of calcium movement to the xylem.
Journal of Experimental Botany,2001,52:891-899
|
CSCD被引
27
次
|
|
|
|
17.
Davenport R. A weakly voltagedependent, non-selective cation channel mediates toxic sodium influx in wheat.
Plant Physiology,2000,122:823-834
|
CSCD被引
25
次
|
|
|
|
18.
White P J. Calcium channels in higher plants.
Biochimiea et Biophysica Acta,2000,1465:171-189
|
CSCD被引
24
次
|
|
|
|
19.
Atkinson C J. Calcium in xylem sap and the regulation of its delivery to the shoot.
Experimental Botany,1992,43:1315-1324
|
CSCD被引
2
次
|
|
|
|
20.
Giuseppe M. Significance of fruit transpiration on calcium nutrition in developing apricot fruit.
Plant Nutr. Soil Sci,2010,173:618-622
|
CSCD被引
1
次
|
|
|
|
|