帮助 关于我们

返回检索结果

骨肉瘤关键基因及免疫浸润的生物信息分析
Bioinformatics Analysis on Key Genes and Immune Infiltration of Osteosarcoma

查看参考文献32篇

李帅 1   郑振中 1   张宇鹏 1   刘子群 1   肖什朋 1   欧阳正晓 2   王冰 1 *  
文摘 目的通过生物信息学方法筛选骨肉瘤潜在的关键基因,并分析其免疫浸润模式。方法从基因表达综合数据库(GEO)获取与骨肉瘤相关的基因表达谱GSE16088和GSE12865,采用生物信息学方法筛选与骨肉瘤相关的差异表达基因(DEGs),并进行基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)富集分析、免疫细胞浸润分析。通过蛋白质-蛋白质相互作用网络筛选出骨肉瘤潜在的关键基因,利用癌症基因组图谱数据库(TCGA)验证关键基因在骨肉瘤和正常组织样本中的表达情况。结果共筛选出108个DEGs。GO功能注释和KEGG富集分析显示,DEGs主要富集在整合素结合、细胞外基质(ECM)结构成分、ECM受体相互作用和磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路。巨噬细胞是骨肉瘤最主要的免疫浸润细胞。分泌型磷蛋白1(SPP1)、基质金属肽酶2(MMP2)、赖氨酰氧化酶(LOX)、V型胶原蛋白α(II)链(COL5A2)、黑色素瘤细胞黏附分子(MCAM)5个关键基因在骨肉瘤和正常组织样本中的表达存在差异(P均<0.05)。结论SPP1、MMP2、LOX、COL5A2、MCAM在骨肉瘤中均上调,可能是骨肉瘤潜在的生物标志物。巨噬细胞是骨肉瘤最主要的免疫浸润细胞,可为骨肉瘤的治疗提供新的方向。
其他语种文摘 Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns.Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA).Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix(ECM)structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05).Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.
来源 中国医学科学院学报 ,2022,44(1):110-117 【核心库】
DOI 10.3881/j.issn.1000-503X.14106
关键词 生物信息学 ; 骨肉瘤 ; 免疫浸润 ; 富集分析
地址

1. 中南大学湘雅二医院脊柱外科, 长沙, 410011  

2. 中南大学湘雅二医院骨科, 长沙, 410011

语种 中文
文献类型 研究性论文
ISSN 1000-503X
学科 肿瘤学
基金 国家自然科学基金
文献收藏号 CSCD:7178358

参考文献 共 32 共2页

1.  Xie B B. Identification of key genes and miRNAs in osteosarcoma patients with chemoresistance by bioinformatics analysis. Biomed Res Int,2018,2018:4761064 CSCD被引 1    
2.  Damron T A. Osteosarcoma,chondrosarcoma,and Ewing's sarcoma:National Cancer Data Base Report. Clin Orthopaed Relat Res,2007,459:40-47 CSCD被引 10    
3.  Miller B J. Risk factors for metastatic disease at presentation with osteosarcoma:An analysis of the SEER database. J Bone Joint Surgery Am,2013,95(13):e89 CSCD被引 7    
4.  Lindsey B A. Osteosarcoma overview. Rheumatol Ther,2017,4(1):25-43 CSCD被引 12    
5.  Zhang Y. Progress in the chemotherapeutic treatment of osteosarcoma. Oncol Lett,2018,16(5):6228-6237 CSCD被引 7    
6.  He P. Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol Med Rep,2016,14(2):1587-1593 CSCD被引 3    
7.  Li Z. Integration of gene expression profile data to screen and verify hub genes involved in osteoarthritis. Biomed Res Int,2018,2018:9482726 CSCD被引 1    
8.  Lu Q Y. Analysis of differentially expressed genes between rheumatoid arthritis and osteoarthritis based on the gene co-expression network. Mol Med Rep,2014,10(1):119-124 CSCD被引 1    
9.  Takeshita M. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis. Arthritis Res Ther,2016,18(1):112 CSCD被引 5    
10.  Lu C. Cold and heat pattern of rheumatoid arthritis in traditional Chinese medicine:Distinct molecular signatures indentified by microarray expression profiles in CD4-positive T cell. Rheumatol Int,2012,32(1):61-68 CSCD被引 24    
11.  Ritchie M E. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res,2015,43(7):e47 CSCD被引 363    
12.  Ashburner M. Gene ontology:Tool for the unification of biology.The Gene Ontology Consortium. Nat Genet,2000,25(1):25-29 CSCD被引 884    
13.  Kanehisa M. KEGG:Kyoto encyclopedia of genes and genomes. Nucleic Acids Res,2000,28(1):27-30 CSCD被引 789    
14.  Chen B. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol,2018,1711:243-259 CSCD被引 24    
15.  von Mering C. STRING:A database of predicted functional associations between proteins. Nucleic Acids Res,2003,31(1):258-261 CSCD被引 50    
16.  Li M X. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis. Onco Targets Ther,2018,11:4105-4112 CSCD被引 4    
17.  Shannon P. Cytoscape:A software environment for integrated models of biomolecular interaction networks. Genome Res,2003,13(11):2498-2504 CSCD被引 1021    
18.  Thiery J P. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer,2002,2(6):442-454 CSCD被引 253    
19.  Yilmaz M. EMT,the cytoskeleton,and cancer cell invasion. Cancer Metastas Rev,2009,28(1/2):15-33 CSCD被引 75    
20.  Hamidi H. Every step of the way:Integrins in cancer progression and metastasis. Nat Rev Cancer,2018,18(9):533-548 CSCD被引 49    
引证文献 1

1 王丽君 肿瘤相关巨噬细胞在骨肉瘤中的作用及中药干预 中国组织化学与细胞化学杂志,2024,33(3):296-303
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号