煤矸石改性生物炭吸附水体中磷酸盐性能研究
The Performance Coal Gangue Modified Biochar in Adsorption Phosphate in Water
查看参考文献36篇
文摘
|
水体中磷的去除对控制水体富营养化具有非常重要的意义。本研究通过以固体废弃物煤矸石和秸秆为原料,制成生物炭复合材料并应用于水溶液中磷酸根的吸附。利用SEM、Zeta电位测量等分析手段对其理化性质进行表征,并对不同的影响因素进行了分析研究以确定最佳的吸附条件。在此基础上,采用不同吸附动力学和吸附等温模型对生物炭的吸附行为和机理进行了研究。结果表明,用煤矸石改性秸秆类生物炭,使生物炭性质都发生改变,比表面积、Zeta电位、电导率、产率及吸附量都显著增加,吸附条件筛选时得到700 ℃生物炭单位吸附量高于450 ℃生物炭,改性生物炭单位吸附量高于原始生物炭,油菜生物炭单位吸附量大于水稻生物炭,酸性条件下单位吸附量与溶液pH值呈负相关,因此选择改性油菜生物炭在700 ℃热解,采用2.5 g/L投加量吸附pH为4的溶液中磷酸根的吸附条件效果最好,单位吸附量为7.08 mg/g,吸附过程符合准二级吸附动力学模型和Langmuir吸附模型,此吸附过程以化学吸附为主,属单分子层有利吸附。本研究开发了一种利用固体废弃物制备新型生物炭基复合材料的方法,该材料具有成本低廉、操作简单、效果显著的特点。 |
其他语种文摘
|
The removal of phosphorus from water is very important for controlling eutrophication. In this study, the functionalized biochar composite was synthetized from solid waste coal gangue and straw and was applied to the phosphate adsorption in aqueous solution. The physical and chemical properties were characterized by SEM and Zeta potential measurement, and its optimum adsorption conditions, adsorption behavior and mechanism were studied. The results show that the use of coal gangue to modify straw biochar changed the properties of biochar, and the specific surface area, Zeta potential, conductivity, yield and adsorption capacity were significantly increased. The result of the screening experiment of adsorption conditions is that the unit adsorption capacity of 700℃ biochar is higher than 450℃ biochar, the unit adsorption capacity of modified biochar is higher than that of original biochar, and the unit adsorption capacity of rape biochar is greater than that of rice biochar. The unit adsorption capacity under acidic conditions is inversely proportional to the pH of the solution. Therefore, the adsorption conditions were selected as pyrolysis of modified rape biochar at 700 ℃, and the adsorption effect of phosphate with the solution of pH 4 using 2.5 g/L dosage was the best, the unit adsorption capacity is 7.08 mg/g. The adsorption process conforms to the quasi-second adsorption kinetic model and the Langmuir adsorption model. This adsorption process is mainly based on chemical adsorption, belongs to the monolayer, which is favorable for adsorption. In this study, a method for preparing a new type of bio-carbon-based composite material using solid waste has been developed. The material has the characteristics of low cost, simple operation and remarkable effect. |
来源
|
地球与环境
,2021,49(3):315-324 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2021.49.065
|
关键词
|
生物炭
;
改性
;
煤矸石
;
磷酸盐
;
固体废弃物
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州大学资源与环境工程学院, 贵阳, 550025
4.
喀斯特地质资源与环境教育部重点实验室, 喀斯特地质资源与环境教育部重点实验室, 贵阳, 550025
5.
贵州喀斯特环境生态系统教育部野外科学观测研究站, 贵州喀斯特环境生态系统教育部野外科学观测研究站, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
环境科学基础理论 |
基金
|
国家重点研发计划项目
;
国家自然科学基金项目
;
贵州省高层次留学人才创新创业择优资助项目
;
贵州大学自然科学专项(特岗)科研基金项目
|
文献收藏号
|
CSCD:6989727
|
参考文献 共
36
共2页
|
1.
Correll D L. The role of phosphorus in the eutrophication of receiving waters: A review.
Journal of Environmental Quality,1998,27:261-266
|
CSCD被引
110
次
|
|
|
|
2.
Conley D J. Controlling eutrophication: nitrogen and phosphorus.
Science,2009,323:1014-1015
|
CSCD被引
365
次
|
|
|
|
3.
Liu Y. Global phosphorus flows and environmental impacts from a consumption perspective.
Journal of Industrial Ecology,2008,12(2):229-247
|
CSCD被引
12
次
|
|
|
|
4.
Grizzetti B. Changes of nitrogen and phosphorus loads to European seas.
Global Change Biology,2012,18(2):769-782
|
CSCD被引
6
次
|
|
|
|
5.
Wang B. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water.
Chemosphere,2020,238:124684
|
CSCD被引
10
次
|
|
|
|
6.
Schoumans O F. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: A review.
Science of the Total Environment,2014,468/469:1255-1266
|
CSCD被引
13
次
|
|
|
|
7.
Long F. Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide.
Chemical Engineering Journal,2011,171(2):448-455
|
CSCD被引
38
次
|
|
|
|
8.
李湘萍. 生物炭对水中重金属及有机物去除的应用现状.
石油学报,2018,34(5):1047-1056
|
CSCD被引
2
次
|
|
|
|
9.
He X. Phosphorus recovery from biogas slurry by ultrasound/H_2O_2 digestion coupled with HFO/biochar adsorption process.
Waste Manag,2017,60:219-229
|
CSCD被引
1
次
|
|
|
|
10.
Lin L. Preparation of chitosan/lanthanum hydroxide composite aerogel beads for higher phosphorus adsorption.
Materials Letters,2018,218:201-204
|
CSCD被引
3
次
|
|
|
|
11.
汪淑廉. 改性粉煤灰对污染水体中磷的吸附特性研究.
广州化工,2019,47(20):84-86
|
CSCD被引
1
次
|
|
|
|
12.
杨放. 生物炭在农业增产和污染治理中的应用.
地球与环境,2012,40(1):100-107
|
CSCD被引
20
次
|
|
|
|
13.
Lehmann J. Bio-char sequestration in terrestrial ecosystems-A review.
Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427
|
CSCD被引
383
次
|
|
|
|
14.
Wang B. Recent advances in engineered biochar productions and applications.
Critical Reviews in Environmental Science and Technology,2018,47(22):2158-2207
|
CSCD被引
2
次
|
|
|
|
15.
Tan X. Biochar-based nano-composites for the decontamination of wastewater: A review.
Bioresource Technology,2016,212:318-333
|
CSCD被引
12
次
|
|
|
|
16.
Xue Y. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests.
Chemical Engineering Journal,2012,200/202:673-680
|
CSCD被引
29
次
|
|
|
|
17.
Wang B. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH.
Chemosphere,2015,138:120-126
|
CSCD被引
17
次
|
|
|
|
18.
Yin Q. Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content.
Science of the Total Environment,2018,631/632:895-903
|
CSCD被引
5
次
|
|
|
|
19.
Li R. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment.
Journal of Cleaner Production,2017,147:96-107
|
CSCD被引
19
次
|
|
|
|
20.
Zhou Y. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions.
Bioresource Technology,2014,152:538-542
|
CSCD被引
20
次
|
|
|
|
|