基于希尔伯特变换的结构光照明快速三维彩色显微成像方法
Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform
查看参考文献24篇
文摘
|
结构光照明显微是一种宽场显微技术,可以实现超分辨成像和三维光切片成像.基于HSV(色相、饱和度、明度)彩色空间的结构光照明全彩色三维光切片成像技术可以复原样品表面的真彩色信息,但每一层光切片都需要采集3幅固定相移差的原始图像,这对于需要多视场拼接的大尺寸样品而言,图像采集数据量大、图像重构时间长的缺点就凸显出来.鉴于此,本文提出一种基于希尔伯特变换的结构光照明快速三维彩色显微成像方法,只需在样品的每一层采集2幅原始图像便可以重构出该层的全彩色光切片图像,因此图像采集量减少了1/3,图像重构时间节约了约28%,有效提高了彩色三维成像的效率和速度. |
其他语种文摘
|
"As a wide-field microscopy, structured illumination microscopy (SIM) enables super-resolution and three-dimensional (3D) imaging. It has recently received lots of attention due to the advantages of high spatial resolution, short image recording time, and less photobleaching and phototoxicity. The SIM has found numerous important applications in time-lapse imaging of living tissues and cellular structures in the field of biomedical science. Color information is an important physical quantity describing the characteristics of living creatures and reflects the differences in its microstructure and optical property to some extent. Although HSV (hue, saturation, value) color space based structured illumination full-color 3D optical sectioning technique can recover the full color information on the surface of the samples without color distortion. However, for each optical sectioning, three raw images with fixed phase shift are required to calculate the sectioning images by the root mean square (RMS) algorithm. This will dramatically increase the data acquisition time and data storage space, especially for a large-scaled sample that needs image stitching strategy. The image processing progress operated in HSV color space need to run the RMS algorithm three times in each channel of HSV space for every section, and transform the images between RGB (red-green-blue) space and HSV space twice. This will absolutely extend the data processing time and put forward higher requirements for computer hardware and software for data storage and processing. To this end, in this paper, a fast 3D color optical sectioning SIM algorithm based on Hilbert-transform is proposed. The Hilbert-transform has proved to be a powerful tool in digital signal and image processing and has successfully applied to the SIM. Here, only two raw images with structured illumination are needed to reconstruct a full-color optical sectioned image for each slice. This fast 3D color sectioning method has the advantage of insensitivity to phase-shift error and has better adaptability to noise, high quality color sectioning images can be obtained under the phase-shift error or noise disturbed environment. The image acquisition data are reduced by 1/3 and the color optical sectioning reconstruction time is saved by about 28%, this new method effectively improves the efficiency and speed for 3D color imaging and will bring a wider application range for SIM." |
来源
|
物理学报
,2020,69(12):128701 【核心库】
|
DOI
|
10.7498/aps.69.20200352
|
关键词
|
三维成像
;
结构光照明
;
彩色
;
显微
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学光电学院, 北京, 100049
3.
西安交通大学理学院, 西安, 710049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3290 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家重点研发计划
|
文献收藏号
|
CSCD:6778113
|
参考文献 共
24
共2页
|
1.
Liu F.
Opt. Express,2009,17:16183
|
CSCD被引
8
次
|
|
|
|
2.
Shevtsova E.
Proc. Natl. Acad. Sci. USA,2011,108:668
|
CSCD被引
12
次
|
|
|
|
3.
Kinoshita S.
Chem. Phys. Chem,2005,6:1442
|
CSCD被引
44
次
|
|
|
|
4.
Conchello J A.
Nat. Methods,2005,2:920
|
CSCD被引
25
次
|
|
|
|
5.
Helmchen F.
Nat. Methods,2005,2:932
|
CSCD被引
145
次
|
|
|
|
6.
Michels J.
J. Microscopy,2007,227:1
|
CSCD被引
3
次
|
|
|
|
7.
Mahou P.
Nat. Methods,2014,11:600
|
CSCD被引
7
次
|
|
|
|
8.
Dunn K W.
Am. J. Physiol.-Cell Physiol,2002,28:C905
|
CSCD被引
3
次
|
|
|
|
9.
Gustafsson M G.
J. Microscopy,2000,198:82
|
CSCD被引
191
次
|
|
|
|
10.
Shao L.
Nat. Methods,2011,8:1044
|
CSCD被引
45
次
|
|
|
|
11.
Kner P.
Nat. Methods,2009,6:339
|
CSCD被引
61
次
|
|
|
|
12.
Neil M A.
Opt. Lett,1997,22:1905
|
CSCD被引
42
次
|
|
|
|
13.
Thomas B.
J. Opt,2013,15:094004
|
CSCD被引
5
次
|
|
|
|
14.
Mertz J.
Nat. Methods,2011,8:811
|
CSCD被引
17
次
|
|
|
|
15.
Dan D.
Sci. Rep,2013,3:1116
|
CSCD被引
56
次
|
|
|
|
16.
Karadaglic D.
Micron,2008,39:808
|
CSCD被引
4
次
|
|
|
|
17.
Patorski K.
Opt. Express,2014,22:9517
|
CSCD被引
7
次
|
|
|
|
18.
Dan D.
Chin. Sci. Bull,2014,59:1291
|
CSCD被引
16
次
|
|
|
|
19.
Zhou X.
PloS One,2015,10
|
CSCD被引
1
次
|
|
|
|
20.
Qian J.
Sci. Rep,2015,5:14513
|
CSCD被引
11
次
|
|
|
|
|