基于自适应光学成像非等晕效应的空变点扩展函数估计模型
Predicted Space-Varying Point Spread Function Model for Anisoplanatic Adaptive Optics Imaging
查看参考文献18篇
文摘
|
针对湍流扰动波前改正的天文自适应补偿成像系统由于等晕区存在而限制了观测视场内有效的补偿区域。这对通过自适应光学系统获取的天文实测数据的充分利用造成很大不便。通过对自适应光学系统空域统计特性的分析,得到空变点扩展函数的成像系统描述。在此基础上,依据大气光学统计理论,通过多相位屏分层大气湍流模型,提出一种利用数值模拟估计空变点扩展函数的方法。结合实际观测条件和自适应光学系统特性,给出运用该方法建立天文自适应成像系统空变点扩展函数估计模型的实例。并将所得模型用于对天文实测图像的重建,结果表明其对系统补偿残差和非等晕效应对成像结果造成的影响有明显改善,验证了该模型的有效性。 |
其他语种文摘
|
The point spread function (PSF) of an adaptive optics (AO) system evolves in larger region than isoplanatic patch in the field of view (FOV). This variation strongly limits the efficient utilization of AO images. A theoretical expression of this space-varying PSF is derived by analysis of characteristics of AO imaging system. Then by combining the space-field statistical characteristics of AO compensation and atmospheric turbulence theory a predicted space-varying parameter PSF model for AO systems is developed and the effectiveness of the model is also tested by employing the predicted space-varying PSF model in reconstruction of AO astronomical image with deconvolution method, which can reduce effects of residual wave-front distortion and anisoplanatism on AO system's partial compensated astronomical images. |
来源
|
光学学报
,2011,31(12):1201001-1-1201001-7 【核心库】
|
关键词
|
自适应光学
;
统计光学
;
天文成像
;
点扩展函数
|
地址
|
中国科学院国家天文台云南天文台, 云南, 昆明, 650011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金资助课题
|
文献收藏号
|
CSCD:4394064
|
参考文献 共
18
共1页
|
1.
Fried D L. Anisoplanatism in adaptive optics.
J. Opt. Soc. Am.,1982,72(52):1917-1983
|
CSCD被引
1
次
|
|
|
|
2.
Rao C. 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory.
Chin. Opt. Lett.,2010,8(10):966-968
|
CSCD被引
12
次
|
|
|
|
3.
Wei K. First light on the 127-element adaptive optical system for 1.8-m telescope.
Chin. Opt. Lett.,2010,8(11):1019-1021
|
CSCD被引
12
次
|
|
|
|
4.
Goodman J W.
Introduction to fourier optics,2005
|
CSCD被引
76
次
|
|
|
|
5.
Goodman J W.
Statistical Optics,1985
|
CSCD被引
48
次
|
|
|
|
6.
Veran J P. Estimation of the adaptive optics long-exposure point spread function using control loop data: recent developments.
J. Opt. Soc. Am.,1997,14(11):3057-3069
|
CSCD被引
2
次
|
|
|
|
7.
Voitsekhovich V V. Effect of anisotropic imaging in off-axis adaptive astronomical systems.
Astronomy and Astrophysics Supplement Series,1999,137:385-389
|
CSCD被引
2
次
|
|
|
|
8.
Fusco T. Characterization of adaptive optics point spread function for anisoplanatic imaging. Application to stellar field deconvolution.
Astronomy and Astrophysics Supplement Series,2000,142:149-156
|
CSCD被引
4
次
|
|
|
|
9.
Roddier F. The effects of atmospheric turbulence in optical astronomy.
Progress in Optics, 19,1981:281-376
|
CSCD被引
2
次
|
|
|
|
10.
Roddier F. On the isoplanatic patch size in stellar speckle interferometry.
J. Opt.,1982,13(2):63-70
|
CSCD被引
1
次
|
|
|
|
11.
Roddier F.
Adaptive Optics in Astronomy,1999
|
CSCD被引
17
次
|
|
|
|
12.
Aubailly M. Approach for reconstructing anisoplanatic adaptive optics images.
Appl. Opt.,2007,46(24):6055-6063
|
CSCD被引
1
次
|
|
|
|
13.
Lane R G. Simulation of a Kolmogorov phase screen.
Waves in Random Media,1992,2(3):209-224
|
CSCD被引
44
次
|
|
|
|
14.
Zhang B. Accurate and fast simulation of Kolmogorov phase screen by combining spectral method with Zernike polynomials method.
Chin. Opt. Lett.,2010,8(10):969-971
|
CSCD被引
1
次
|
|
|
|
15.
Tang G. Performance and test results of a 61-element adaptive optics system on the 1.2-m telescope of Yunnan Observatory.
SPIE. 4926,2002:13-19
|
CSCD被引
1
次
|
|
|
|
16.
Rao C. Upgrade on 61-element adaptive optical system for 1.2-m telescope of Yunnan Observatory.
SPIE. 5490,2004:943-953
|
CSCD被引
1
次
|
|
|
|
17.
Richardson W H. Bayesian-based iterative method of image restoration.
J. Opt. Soc. Am.,1972,62(55/59):1917-1983
|
CSCD被引
1
次
|
|
|
|
18.
Murtagh F.
Astronomical Image and Data Analysis,2006
|
CSCD被引
2
次
|
|
|
|
|