一种含运动固壁超声速流动的Descartes网格算法
A Cartesian Mesh Algorithm for Supersonic Flows Around Arbitrary Moving Bodies
查看参考文献24篇
文摘
|
提出一种Descartes网格算法,用于数值求解含任意复杂及运动固壁的超声速流动问题.采用位标集函数确定和跟踪流-固界面.引入虚网格技术处理流-固边界条件,并沿法向和切向分别进行计算.该算法简单、稳健,可与高阶有限差分格式并用.选取一组一维/二维静止或运动物体绕流算例,验证其有效性. |
其他语种文摘
|
A Cartesian mesh algorithm is developed for numerical solution of supersonic flows with arbitrarily complex and moving solid boundaries.The method defines and tracks fluid-solid interfaces with a level set function.Fluid-solid boundary condition is dealed with a ghost cell technique and is calculated separately in normal and tangential directions.The method proposed is simple,robust,and can work with high-order finite difference schemes.To validate the scheme,one-and two-dimensional numerical examples involving static or moving boundaries are included. |
来源
|
计算物理
,2009,26(4):517-526 【核心库】
|
关键词
|
流-固界面
;
Descartes网格
;
运动边界
;
位标集
;
激波
|
地址
|
1.
中国航天空气动力技术研究院, 北京, 100074
2.
慕尼黑工业大学,机械工程学院, 85748
3.
中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-246X |
学科
|
航空 |
文献收藏号
|
CSCD:3664549
|
参考文献 共
24
共2页
|
1.
Benek J A.
Extended chimera grid embedding scheme with application to viscous flows[ALAA Paper 87-1126],1987
|
CSCD被引
1
次
|
|
|
|
2.
Lohner R.
The efficient simulation of strong unsteady flows by finite element method[AIAA Paper 87-0555],1987
|
CSCD被引
1
次
|
|
|
|
3.
Yang G. A Cartesian cut cell method for compressible flows.Part A:static body problems.
Aeronautical Journal,1997,101:47-56
|
CSCD被引
7
次
|
|
|
|
4.
Yang G. A Cartesian cut cell method for compressible flows.Part B:moving body problems.
Aeronautical Journal,1997,101:57-65
|
CSCD被引
2
次
|
|
|
|
5.
Ma Tianbac. Interface reconstruction algorithm in Eulerian multi-material hydrodynamic numerical method.
Chinese J Compnt Phys,2008,25(2):133-138
|
CSCD被引
1
次
|
|
|
|
6.
Wang Bing. Simalation of complex flows with large-scale moving boundaries.
Chinese J Comput Phys,2008,25(4):396-400
|
CSCD被引
3
次
|
|
|
|
7.
Wang Yongjian. An arbitrary Lngrangian-Eulerian method with adaptive moving mesh.
Chiense J Comput Phys,2007,24(3):261-267
|
CSCD被引
2
次
|
|
|
|
8.
Gong Xiangfei. Numerical simulation of fluid interfaces with the adaptive mesh refinement method,the ghost fluid method and the level set method.
Chinese J Comput Phys,2006,23(4):391-395
|
CSCD被引
5
次
|
|
|
|
9.
Falcovitz J. A two-dimensional conservation laws schemes for compressible flows with moving boundaries.
Journal of Computational Physics,1997,138(1):83-102
|
CSCD被引
5
次
|
|
|
|
10.
Fedkiw R. A non-oscillatory Euhrian approach to interfaces in multimaterial flows (the ghost fluid method).
Journal of Computational Physics,1999,152:457-492
|
CSCD被引
133
次
|
|
|
|
11.
Chung M H. A level set approach for computing solutions to inviscid compressible flow with moving solid boundary using fixed Cartesian grids.
International Journal for Numerical Methods in Fluids,2001,36(4):373-389
|
CSCD被引
4
次
|
|
|
|
12.
Yang G. Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method.
International Journal for Numerical Methods in Fluids,2000,33:1121-1151
|
CSCD被引
9
次
|
|
|
|
13.
Sussman M. An improved level set method for incompressible two-phase flows.
Computers & Fluids,1998,27:663-680
|
CSCD被引
34
次
|
|
|
|
14.
Huang C W. On the complexity of point-in-polygon algorithms.
Computers and Goosciences,1997,23:109-118
|
CSCD被引
9
次
|
|
|
|
15.
Peng D. A PDE-based fast local level set method.
Journal of Computational Physics,1999,155:410-438
|
CSCD被引
43
次
|
|
|
|
16.
Sethain J A. Evolution,implementation,and application of level set and fast marching methods for advancing fronts.
Journal of Computational Physics,2001,169:503-555
|
CSCD被引
1
次
|
|
|
|
17.
Fedkiw R. An isobaric fix for the overheating problem in multimaterial compressible flows.
J Compnt Phys,1999,148:545-578
|
CSCD被引
25
次
|
|
|
|
18.
Shu C W. Efficient implementation of essentially non-oscillatory sbock-capturing schemes.
J Comput Plays,1988,77:439-471
|
CSCD被引
223
次
|
|
|
|
19.
Jiang G S. Efficient implementation of weighted ENO schemes.
Journal of Computational Physics,1996,126:202-228
|
CSCD被引
383
次
|
|
|
|
20.
Quirk J J. An alternative to unstructured grid for computing gas dynamic flows around arbitrarily complex two-dlmensional bodies.
Computers & Fluids,1994,23:125-142
|
CSCD被引
6
次
|
|
|
|
|