纳米孔测序技术在血流感染病原学诊断中的应用和展望
Application and Prospect of Nanopore Sequencing Technology in Etiological Diagnosis of Blood Stream Infection
查看参考文献21篇
文摘
|
血流感染(BSI)是由细菌、真菌和病毒等微生物引起的血液播散性疾病,可导致菌血症、败血症、感染性休克,严重危及人类生命健康。明确病原体是精准治疗BSI的重要核心。传统血培养是病原体诊断的金标准,其不足是耗时长,会产生假阴性结果等,在临床实践中具有一定的局限性。纳米孔测序作为新一代测序技术,能快速检测病原体,完成耐药基因、毒力基因检测,可优化临床治疗。本文就纳米孔测序技术在BSI中的应用现状进行综述。 |
其他语种文摘
|
Blood stream infection(BSI), a blood-borne disease caused by microorganisms such as bacteria, fungi, and viruses, can lead to bacteremia, sepsis, and infectious shock, posing a serious threat to human life and health. Identifying the pathogen is central to the precise treatment of BSI. Traditional blood culture is the gold standard for pathogen identification, while it has limitations in clinical practice due to the long time consumption, production of false negative results, etc. Nanopore sequencing, as a new generation of sequencing technology, can rapidly detect pathogens, drug resistance genes, and virulence genes for the optimization of clinical treatment. This paper reviews the current status of nanopore sequencing technology in the diagnosis of BSI. |
来源
|
中国医学科学院学报
,2023,45(2):317-321 【核心库】
|
DOI
|
10.3881/j.issn.1000-503X.14995
|
关键词
|
纳米孔测序
;
血流感染
;
高通量核苷酸测序
|
地址
|
1.
清华大学临床医学院清华大学附属北京清华长庚医院呼吸与危重症医学科, 北京, 102218
2.
首都医科大学附属北京地坛医院传染病研究所, 新发突发传染病北京市重点实验室, 北京, 100015
3.
清华大学临床医学院清华大学附属北京清华长庚医院老年医学科, 北京, 102218
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-503X |
学科
|
临床医学 |
基金
|
清华大学精准医学科研计划
;
北京市自然科学基金-海淀原始创新联合基金(前沿项目)
|
文献收藏号
|
CSCD:7470011
|
参考文献 共
21
共2页
|
1.
周梦兰. 血流感染流行病学研究进展.
中国感染与化疗杂志,2019,19(2):212-217
|
CSCD被引
22
次
|
|
|
|
2.
Li H. SARS-CoV-2 and viral sepsis: observations and hypotheses.
Lancet,2020,395(10235):1517-1520
|
CSCD被引
60
次
|
|
|
|
3.
Weng L. Sepsis-related mortality in China: a descriptive analysis.
Intensive Care Med,2018,44(7):1071-1080
|
CSCD被引
42
次
|
|
|
|
4.
Lamy B. Bloodstream infections-standard and progress in pathogen diagnostics.
Clin Microbiol Infect,2020,26(2):142-150
|
CSCD被引
19
次
|
|
|
|
5.
Zhou M. An improved in-house MALDI-TOF MS protocol for direct cost-effective identification of pathogens from blood cultures.
Front Microbiol,2017,8:1824
|
CSCD被引
5
次
|
|
|
|
6.
Irwin A D. Optimising treatment outcomes for children and adults through rapid genome sequencing of sepsis pathogens. A study protocol for a prospective, multi-centre trial (DIRECT).
Front Cell Infect Microbiol,2021,11:667680
|
CSCD被引
1
次
|
|
|
|
7.
Han D. mNGS in clinical microbiology laboratories: on the road to maturity.
Crit Rev Microbiol,2019,45(5/6):668-685
|
CSCD被引
46
次
|
|
|
|
8.
Sanger F. DNA sequencing with chain-terminating inhibitors. 1977.
Biochemistry,1992,24:104-108
|
CSCD被引
1
次
|
|
|
|
9.
van Dijk E L. Ten years of next-generation sequencing technology.
Trends Genet,2014,30(9):418-426
|
CSCD被引
77
次
|
|
|
|
10.
Levy S E. Next-generation sequencing strategies.
Cold Spring Harb Perspect Med,2019,9(7):a025791
|
CSCD被引
6
次
|
|
|
|
11.
Ashton P M. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island.
Nat Biotechnol,2015,33(3):296-300
|
CSCD被引
13
次
|
|
|
|
12.
Lu H. Oxford Nanopore MinION Sequencing and Genome Assembly.
Genomics Proteomics Bioinformatics,2016,14(5):265-279
|
CSCD被引
37
次
|
|
|
|
13.
Wang Y. Nanopore sequencing technology, bioinformatics and applications.
Nat Biotechnol,2021,39(11):1348-1365
|
CSCD被引
46
次
|
|
|
|
14.
Greninger A L. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis.
Genome Med,2015,7:99
|
CSCD被引
18
次
|
|
|
|
15.
Ashikawa S. Rapid identification of pathogens from positive blood culture bottles with the MinION nanopore sequencer.
J Med Microbiol,2018,67(11):1589-1595
|
CSCD被引
7
次
|
|
|
|
16.
Bialasiewicz S. Rapid diagnosis of capnocytophaga canimorsus septic shock in an immunocompetent individual using real-time nanopore sequencing: a case report.
BMC Infect Dis,2019,19(1):660
|
CSCD被引
2
次
|
|
|
|
17.
Sakai J. An identification protocol for ESBL-producing gram-negative bacteria bloodstream infections using a MinION nanopore sequencer.
J Med Microbiol,2019,68(8):1219-1226
|
CSCD被引
2
次
|
|
|
|
18.
Zhou M. Comprehensive pathogen identification, antibiotic resistance, and virulence genes prediction directly from simulated blood samples and positive blood cultures by nanopore metagenomic sequencing.
Front Genet,2021,12:620009
|
CSCD被引
3
次
|
|
|
|
19.
Zheng W. Coexistence of two bla(CTXM-14) genes in a bla(NDM-5)-carrying multidrug-resistant escherichia coli strain recovered from a bloodstream infection in China.
J Glob Antimicrob Resist,2021,26:11-14
|
CSCD被引
2
次
|
|
|
|
20.
Gu D. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study.
Lancet Infect Dis,2018,18(1):37-46
|
CSCD被引
103
次
|
|
|
|
|